
CSc 352
Shell Scripting

Benjamin Dicken

Shell Scripts

Many cases where it is useful to string together multiple bash commands
to complete a task

This: NBA and Currency examples from last class!

Can write bash scripts.

Programs written in bash

Shell Scripts

● Shell scripts typically use the .sh extension, but ultimately, as with
many file types, they’re just text file behind-the-scenes

● The first line should always be of the form:

#! /path/to/interpreter

More specifically:

#! /bin/bash

See: https://stackoverflow.com/questions/8967902/ and https://linux.die.net/man/2/execve

https://stackoverflow.com/questions/8967902/
https://linux.die.net/man/2/execve

Shell Scripts

 1 #! /bin/bash

 2

 3 wget https://www.nba.com/suns/roster 2> /dev/null

 4

 5 cat roster | sed 's/[{}]/\n/g' > roster2

 6

 7 echo "Suns player names sorted:"

 8

 9 sed -n -E 's/Person","name":"([A-Za-z]+)"/\1/p' roster2 | cut -d '"' -f 4

Shell Scripting Variables

Shell scripts support variables

name="Ben"

occupation=Lecturer

echo "${name} is a ${occupation}"

By default, the “type” of all variables are basically just strings
○ There are attributes, but for now just expect that every variables is

just a string
○ https://stackoverflow.com/questions/29840525

https://stackoverflow.com/questions/29840525

Command Line Arguments

Special variables for the command line arguments:

#! /bin/bash

echo "Your name is: ${1}"

echo "Your occupation is: ${2}"

echo "The command line arguments: ${@}"

Activity

Modify the script

How could this script be modified to allow the user to specify the team to
get the roster for as a command line argument?

 1 #! /bin/bash

 2

 3 wget https://www.nba.com/suns/roster 2> /dev/null

 4

 5 cat roster | sed 's/[{}]/\n/g' > roster2

 6

 7 echo "Suns player names sorted:"

 8

 9 sed -n -E 's/Person","name":"([A-Za-z]+)"/\1/p' roster2 | cut -d '"' -f 4

Command Substitution

Storing the standard out that a command produces in a variable is useful
when scripting with bash

Use command substitution with $(command)

temp_files=$(ls /tmp/)

username=$(whoami)

search_results=$(cat roster.txt | grep [A-Z])

Loops

Can loop through a sequence of tokens with a for loop

for VARIABLE in X Y Z;

do

 echo ${VARIABLE}

done

Conditions

if test "${num1}" -eq "${num2}"

then

 echo "equal"

else

 echo "unequal"

fi

● Use -eq, -gt, -lt for numbers
● Use == , !=, etc for non numeric strings

Activity

Rewrite SBT as a shell script (simplified)

Re-implement the SBT script as a shell script
The script should:

● Run make to build a program
● Iterate through test directories
● Check if output matches expected
● Run make clean at the end

#!/bin/bash

code_dir=${1}

test_dir=${2}

pushd ${code_dir}

make > /dev/null

popd

test_dir_names=$(ls ${test_dir})

for directory in ${test_dir_names};

do

 echo "Testing the directory ${directory}"

 cat ${test_dir}/${directory}/input.txt | ${code_dir}/a.out > /tmp/actual.txt

 diff ${test_dir}/${directory}/output.txt /tmp/actual.txt

done

Activity

Improve SBT

Have the program say “Text case X passed” or “text case X failed”
depending on the results of the call to the diff command.

Use a bash if-statement

/tmp/sbtsh

#!/bin/bash

code_dir=${1}

test_dir=${2}

pushd ${code_dir}

make > /dev/null

popd

test_dir_names=$(ls ${test_dir})

for directory in ${test_dir_names};

do

 echo "Testing the directory ${directory}"

 cat ${test_dir}/${directory}/input.txt | ${code_dir}/a.out > /tmp/actual.txt

 result=$(diff ${test_dir}/${directory}/output.txt /tmp/actual.txt)

 if test "${result}" == ""

 then

 echo "passed test case for ${test_dir}"

 else

 echo "failed test case for ${test_dir}"

 fi

done

Activity

Kill Processes

● Write a bash script that accepts one command-line argument
● Script should search for all processes that match the argument, and

kill each one
● Kill by PID using the kill command

$./kill_processes.sh hithere

2 Processes Killed

$

Do not use killall

#!/bin/bash

to_kill=${1}

ps_results=$(ps -e | grep ${to_kill})
pids=$(printf "${ps_results}" | sed -n -E 's/^[]*(.+)/\1/p' | cut -d ' ' -f 2)

counter=0

for pid in ${pids} ;

do

 kill -9 ${pid}

 counter=$((counter+1))

done

echo "${counter} processes were killed"

