
CSc 352
Processes

Benjamin Dicken

Source Code
● The human-readable text describing what we want a program to

accomplish based on a particular syntax (Say .c or .java)

Executable Program
● The file containing the object code that can be loaded and

executed by the CPU of a computer

Process
● An instance of computation that executes a program over some

lifespan, depending on how long the program takes to execute

Process

A unit of computation. When we want to run some program:
● Create a new process
● Load the program into the process
● Execute
● Close

A process can have either one or multiple threads of execution

Process Contents

Image
● The executable code / variables / values loaded into memory

Memory
● Memory space to be used for the program stack, heap

OS Descriptors
● For example, open file descriptors

Security Attributes
● Process owner, privileges, etc

Processor State
● Content of registers, memory addressing

https://en.wikipedia.org/wiki/Process_(computing)

https://en.wikipedia.org/wiki/Process_(computing)

CPU

● The CPU is what executes a process.
● The OS manages which processes get run when
● Nowadays, most CPUs are multi-core, but will use both single-core

and multi-core in examples.

http://www.cs.rpi.edu/academics/courses/fall04/os/c8/

http://www.cs.rpi.edu/academics/courses/fall04/os/c8/

Process A: bash

Process B: grep

Process C: Spotify

Process D: Brave

CPU Execution

timeMultitasking

OS Scheduler

CPU Execution

time

Process A: bash

Process C: Spotify

Process D: Brave

Process A: bash

Process B: grep

Multitasking

. . . .

Process A: bash

Process B: grep

Process C: Spotify

Process D: Brave

OS Scheduler

CPU Execution

Core 1
Multitasking,
multi-core Core 2

Process A: bash

Process B: grep

Process C: Spotify

Process D: Brave

time

OS
Scheduler

Process A: bash

Process B: grep

Process C: Spotify

Process D: Brave

CPU Execution

Core 1
timeMultitasking,

multi-core Core 2

Process A: bash

Process B: grep

Process D: Brave
Process C: Spotify

Process B: grep Process C: Spotify

Process D: Brave Process A: bash

. . . .

OS
Scheduler

CPU Scheduler

● A Component of the UNIX OS, manages compute-time of the CPU
● CPU scheduling / switching often happens so fast, things *seem* to

be running “at the same time”
● UNIX: Completely Fair Scheduler (CFS)

○ https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

Interacting with Processes

UNIX systems provide a number of commands we can use to view /
manage / destroy / create processes.

Let’s look at a few.

Viewing Processes

ps allows us to view the ongoing processes on a UNIX system

$ ps -e

 PID TTY TIME CMD

 1 ? 01:04:45 systemd

 2 ? 00:00:08 kthreadd

 3 ? 00:00:00 rcu_gp

 4 ? 00:00:00 rcu_par_gp

 6 ? 00:00:00 kworker/0:0H-kblockd

 9 ? 00:00:00 mm_percpu_wq

 10 ? 00:01:14 ksoftirqd/0

Viewing Processes

ps allows us to view the ongoing processes on a UNIX system

$ ps -e

 PID TTY TIME CMD

 1 ? 01:04:45 systemd

 2 ? 00:00:08 kthreadd

 3 ? 00:00:00 rcu_gp

 4 ? 00:00:00 rcu_par_gp

 6 ? 00:00:00 kworker/0:0H-kblockd

 9 ? 00:00:00 mm_percpu_wq

 10 ? 00:01:14 ksoftirqd/0

The executable this
process is running

CPU time of process

Terminal associated
with process, if any

Process ID number

Signalling Processes

kill allows us to send signals to processes (the default is TERM)

$ kill -l

$ kill process_id

What signals are there?

$ man signal

$ man 7 signal

#include <stdio.h>

#include <signal.h>

void handle_signal(int sig) {

 fprintf(stderr, "Fix your broken code!\n");

 fflush(stderr);

}

int main() {

 signal(SIGSEGV, handle_signal);

 char* x = NULL;

 printf("%s\n", x);

 return 0;

}

Handling Signals

Background Processes

Use the & at the end of a command to put it into the background

$./a.out &

Use the fg / bg command to move commands to foreground /
background

Use the jobs command to view jobs

Background Processes

#include <stdio.h>

#include <unistd.h>

int main(int argc, char* argv[]) {

 for (int i = 0; i < 1000; i++) {

 printf("%s\n", argv[1]);

 sleep(2);

 }

 return 0;

}

