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Source Code
● The human-readable text describing what we want a program to 

accomplish based on a particular syntax (Say .c or .java)

Executable Program
● The file containing the object code that can be loaded and 

executed by the CPU of a computer

Process
● An instance of computation that executes a program over some 

lifespan, depending on how long the program takes to execute



Process

A unit of computation. When we want to run some program:
● Create a new process
● Load the program into the process
● Execute
● Close

A process can have either one or multiple threads of execution



Process Contents

Image
● The executable code / variables / values loaded into memory

Memory
● Memory space to be used for the program stack, heap

OS Descriptors
● For example, open file descriptors

Security Attributes
● Process owner, privileges, etc

Processor State
● Content of registers, memory addressing

https://en.wikipedia.org/wiki/Process_(computing)

https://en.wikipedia.org/wiki/Process_(computing)


CPU

● The CPU is what executes a process.
● The OS manages which processes get run when
● Nowadays, most CPUs are multi-core, but will use both single-core 

and multi-core in examples.

http://www.cs.rpi.edu/academics/courses/fall04/os/c8/

http://www.cs.rpi.edu/academics/courses/fall04/os/c8/
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CPU Scheduler

● A Component of the UNIX OS, manages compute-time of the CPU
● CPU scheduling / switching often happens so fast, things *seem* to 

be running “at the same time”
● UNIX: Completely Fair Scheduler (CFS)

○ https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler


Interacting with Processes

UNIX systems provide a number of commands we can use to view / 
manage / destroy / create processes.

Let’s look at a few.



Viewing Processes

ps allows us to view the ongoing processes on a UNIX system

$ ps -e

    PID TTY          TIME CMD

      1 ?        01:04:45 systemd

      2 ?        00:00:08 kthreadd

      3 ?        00:00:00 rcu_gp

      4 ?        00:00:00 rcu_par_gp

      6 ?        00:00:00 kworker/0:0H-kblockd

      9 ?        00:00:00 mm_percpu_wq

     10 ?        00:01:14 ksoftirqd/0
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Signalling Processes

kill allows us to send signals to processes (the default is TERM)

$ kill -l

$ kill process_id

What signals are there?

$ man signal

$ man 7 signal



#include <stdio.h>

#include <signal.h>

 

void handle_signal(int sig) {

  fprintf(stderr, "Fix your broken code!\n");

  fflush(stderr);

}

 

int main() {

  signal(SIGSEGV, handle_signal);

  char* x = NULL;

  printf("%s\n", x); 

  return 0;

}

Handling Signals



Background Processes

Use the & at the end of a command to put it into the background

$ ./a.out &

Use the fg / bg command to move commands to foreground / 
background

Use the jobs command to view jobs



Background Processes

#include <stdio.h>

#include <unistd.h>

int main(int argc, char* argv[]) {

  for (int i = 0; i < 1000; i++) {

    printf("%s\n", argv[1]);

    sleep(2);

  }

  return 0;

}


