
CSc 352
Binary File IO

Benjamin Dicken

File Content

● Recall that files on a UNIX system are iNodes, that have pointers to
data blocks, where the actual data of a file is stored

● Those blocks contain a sequence of 1’s and 0’s

● We can choose how to interpret when we read
● We can choose the format when we write

File Content

● Many of the files we have dealt with on UNIX in this course have
been “text” files
○ *.c *.py *.txt *.stl makefile
○ This is just because we wrote text to those, and used programs

that interpret files as text (vim)
● What have we used that are *NOT* text files?
● A “binary file” is just a file that we treat as information represented in

RAW binary, rather than ASCII characters

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

int main() {

 uint32_t number = 10000000;

 FILE* text = fopen("text", "w");

 fprintf(text, "%u", number);

 fclose(text);

 FILE* binary = fopen("binary", "wb");

 fwrite(&number, 1, sizeof(number), binary);

 fclose(binary);

 return 0;

}

What is this?

What is this?

Tools for viewing file contents

$ hexdump file_name

$ xxd -b file_name

Activity
#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

int main() {

 uint64_t number = 20;

 FILE* text = fopen("text", "w");

 fprintf(text, "%lu", number);

 fclose(text);

 FILE* binary = fopen("binary", "wb");

 fwrite(&number, 1, sizeof(number), binary);

 fclose(binary);

 return 0;

}

Which file represents the
number more efficiently?

Activity
#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

int main() {

 uint64_t number = 517;

 FILE* text = fopen("text", "w");

 fprintf(text, "%lu", number);

 fclose(text);

 FILE* binary = fopen("binary", "wb");

 fwrite(&number, 1, sizeof(number), binary);

 fclose(binary);

 return 0;

}

Which file represents the
number more efficiently?

Activity
#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

int main() {

 uint64_t number = 129481231210;

 FILE* text = fopen("text", "w");

 fprintf(text, "%lu", number);

 fclose(text);

 FILE* binary = fopen("binary", "wb");

 fwrite(&number, 1, sizeof(number), binary);

 fclose(binary);

 return 0;

}

Which file represents the
number more efficiently?

Activity

19311233,80,90,100

91246834,7,85,82

21245122,43,100,87

18673124,90,75,90

Data Representation

Each row represents:
 studentID, exam 1, exam 2, final exam

How many bytes would it take to
represent this with a CSV ASCII file?

How many bytes would it take to
represent this in binary? How compact
could we get it?

grade_info.csv

Activity

Implement Conversion

Write the code to:

● Open this text file
● Re-write the same data to

binary_grade_info.bin
● Close the file

grade_info.csv

19311233,80,90,100

91246834,7,85,82

21245122,43,100,87

18673124,90,75,90

int main() {

 FILE* f = fopen("grade_info.csv", "r");

 FILE* b = fopen("grade_info.bin", "wb");

 char buffer[50];

 while (fgets(buffer, 25, f) != NULL) {

 int length = strlen(buffer);

 buffer[8] = '\0';

 uint32_t number = atoi(buffer);

 fwrite(&number, 1, sizeof(uint32_t), b);

 char * iter = &buffer[9];

 for (int i = 9; i < length; i++) {

 if (buffer[i] != ',' && buffer[i] != '\n') {

 } else {

 buffer[i] = '\0';

 uint8_t grade = atoi(iter);

 fwrite(&grade, 1, sizeof(grade), b);

 iter = &buffer[i+1];

 }

 }

 }

 fclose(f);

 fclose(b);

 return 0;

}

Activity

Sum the numbers

Write a program that:

1. Asks the user for a file name
2. Sums the numbers
3. Prints the result

Assume that the file is formatted in
binary and has alternating 8-byte
integers (uint64_t) and 4-byte floats
(float)

Use fread

Use:
/tmp/352numbers

and
/tmp/more352numbers

to test

#include <stdlib.h>

#include <stdio.h>

#include <stdint.h>

int main(int argc, char* argv[]) {

 FILE* f = fopen(argv[1], "rb");

 int i = 0;

 int r = 1;

 double sum = 0;

 while(r) {

 if (i%2 == 0) {

 uint64_t temp = 0;

 r = fread(&temp, sizeof(uint64_t), 1, f);

 sum += temp;

 } else {

 float temp = 0.0;

 r = fread(&temp, sizeof(float), 1, f);

 sum += temp;

 }

 i++;

 }

 fclose(f);

 printf("SUM: %lf\n", sum);

 return 0;

}

