
CSc 352

C Programming
2D Arrays
Benjamin Dicken

2D Array

int main() {

 int numbers[2][2] = { {1, 2}, {3, 4} };

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 2; j++) {

 printf("Element at address %p ",

 &numbers[i][j]);

 printf("is %d\n", numbers[i][j]);

 }

 }

}

2D Array

int main() {

 int numbers[2][2] = { {1, 2}, {3, 4} };

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 2; j++) {

 printf("Element at address %p ",

 &numbers[i][j]);

 printf("is %d\n", numbers[i][j]);

 }

 }

}

numbers
(0x00….010)

address value

0x00..10 1

0x00..14 2

0x00..18 3

0x00..1c 4

2D Array Memory Layout

The memory layout for a 2D array is one, contiguous block of memory
sized N * M * T where N is the number of rows, M is the number of
columns, and T is the size of the type of each element.

With these “basic” 2D arrays, each row is of same length, even if not
given a value explicitly

2D Array Indexing

To access an element at a pair of 2D indexes, such as:

int array[t][r] = {....}

....

printf("%d", array[x][y]);

The program can take the base address of array and add ((r*x)+y) to
get to the address of the requested element.

2D Array rows

int main() {

 int numbers[3][4] = { {1, 2, 3, 4},

 {50, 75}, {10, 20, 100} };

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 printf("Element at address %p ",

 &numbers[i][j]);

 printf("is %d\n", numbers[i][j]);

 }

 }

}

numbers
(0x00….010)

address value

0x00..10 1

0x00..14 2

0x00..18 3

0x00..1c 4

0x00..20 50

0x00..24 75

0x00..28 ?

0x00..2c ?

0x00..30 10

0x00..34 20

0x00..38 100

0x00..3c ?

2D Array rows

int main() {

 int numbers[3][4] = { {1, 2, 3, 4},

 {50, 75}, {10, 20, 100} };

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 printf("Element at address %p ",

 &numbers[i][j]);

 printf("is %d\n", numbers[i][j]);

 }

 }

}

numbers
(0x00….010)

address value

0x00..10 1

0x00..14 2

0x00..18 3

0x00..1c 4

0x00..20 50

0x00..24 75

0x00..28 ?

0x00..2c ?

0x00..30 10

0x00..34 20

0x00..38 100

0x00..3c ?

Wasted space

Activity
int main() {

 int numbers[3][4] = { {1, 2, 3, 4},

 {50, 75}, {10, 20, 100} };

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 printf("Element at address %p ",

 &numbers[i][j]);

 printf("is %d\n", numbers[i][j]);

 }

 }

}

address value

0x00..10 1

0x00..14 2

0x00..18 3

0x00..1c 4

0x00..20 50

0x00..24 75

0x00..28 ?

0x00..2c ?

0x00..30 10

0x00..34 20

0x00..38 100

0x00..3c ?

Say we want some kind of alternative 2D structure
to store rows of numbers, but we don’t want any
wasted space.

How can we fix the “wasted space” issue?

Activity

What will this print?

int main() {

 int x[2] = {1, -1};

 int y[1] = {-1};

 int z[4] = {10, 20, 100, -1};

 int* two_d[3] = {x, y, z};

 for (int i = 0; i < 3; i++) {

 for (int j = 0; two_d[i][j] != -1; j++) {

 printf("Element at address %p ",

 &two_d[i][j]);

 printf("is %d\n", two_d[i][j]);

 }

 }

 printf("%p %p %p %p", x, y, z, two_d);

}

Assuming that these arrays
are placed in sequence on
the stack.

Array of Pointers two_d
(0x00….02c)

address value

0x00..10 1

0x00..14 -1

0x00..18 -1

0x00..1c 10

0x00..20 20

0x00..24 100

0x00..28 -1

0x00..2c 0x00..10

0x00..34 0x00..18

0x00..3c 0x00..1c

int main() {

 int x[2] = {1, -1};

 int y[1] = {-1};

 int z[4] = {10, 20, 100, -1};

 int* two_d[3] = {x, y, z};

 for (int i = 0; i < 3; i++) {

 for (int j = 0; two_d[i][j] != -1; j++) {

 printf("Element at address %p ",

 &two_d[i][j]);

 printf("is %d\n", two_d[i][j]);

 }

 }

 printf("%p %p %p %p", x, y, z, two_d);

}

address value

0x00..10 1

0x00..14 -1

0x00..18 -1

0x00..1c 10

0x00..20 20

0x00..24 100

0x00..28 -1

0x00..2c 0x00..10

0x00..34 0x00..18

0x00..3c 0x00..1c

Array of Pointers two_d
(0x00….02c)

int main() {

 int x[2] = {1, -1};

 int y[1] = {-1};

 int z[4] = {10, 20, 100, -1};

 int* two_d[3] = {x, y, z};

 for (int i = 0; i < 3; i++) {

 for (int j = 0; two_d[i][j] != -1; j++) {

 printf("Element at address %p ",

 &two_d[i][j]);

 printf("is %d\n", two_d[i][j]);

 }

 }

 printf("%p %p %p %p", x, y, z, two_d);

}

address value

0x00..10 1

0x00..14 -1

0x00..18 -1

0x00..1c 10

0x00..20 20

0x00..24 100

0x00..28 -1

0x00..2c 0x00..10

0x00..34 0x00..18

0x00..3c 0x00..1c

Array of Pointers two_d
(0x00….02c)

int main() {

 int x[2] = {1, -1};

 int y[1] = {-1};

 int z[4] = {10, 20, 100, -1};

 int* two_d[3] = {x, y, z};

 for (int i = 0; i < 3; i++) {

 for (int j = 0; two_d[i][j] != -1; j++) {

 printf("Element at address %p ",

 &two_d[i][j]);

 printf("is %d\n", two_d[i][j]);

 }

 }

 printf("%p %p %p %p", x, y, z, two_d);

}

int numbers[3][4] =

 { {1, 2}, {50}, {10, 20, 100, 1} };

address value

0x00..10 1

0x00..14 2

0x00..18 0

0x00..1c 0

0x00..20 50

0x00..24 0

0x00..28 0

0x00..2c 0

0x00..30 10

0x00..34 20

0x00..38 100

0x00..3c 1

int x[2] = {1, -1};

int y[1] = {-1};

int z[4] = {10, 20, 100, -1};

int* two_d[3] = {x, y, z};

address value

0x00..10 1

0x00..14 -1

0x00..18 -1

0x00..1c 10

0x00..20 20

0x00..24 100

0x00..28 -1

0x00..2c 0x00..10

0x00..34 0x00..18

0x00..3c 0x00..1c

Activity

Analyze the program

Find /tmp/story.txt and /tmp/most_occurring.c

Reads in paragraphs, determined most occurring
word for each, uses 2D arrays

1. Copy it to a directory that you control
$ cp /tmp/story.txt ~/

$ cp /tmp/most_occurring.c ~/

2. Compile and try it out!
$ gcc most_occurring.c

$ cat story.txt | ./a.out

3. Look at the source, what are the weaknesses?

There once was a bear
that lived by the sea in a tiny house.

He wanted to go into town to get some
ice-cream. However, he knew people in town
would be scared of him. Those town people
are scared easily.

He came up with a plan to get around
this. The plan was to dress up as a man.
The plan worked, and he was able to get
ice-cream.

story.txt

Most-occurring word from paragraph 1: a
Most-occurring word from paragraph 2: town
Most-occurring word from paragraph 3: plan

output

