
CSc 352
Bit Manipulation

Benjamin Dicken

Bit Operations

C supports a number of operations to manipulate the ones
and zeros in memory

Shifting: >> <<
Masking: & | ^
Flipping: ~

uint8_t x, y;

x = 1; // 00000001

y = x<<2; // 00000100

y = y>>2; // 00000001

for (int i = 0; i < 8; i++) {

 y = y<<1;

 printf("%u\n", y);

}

Activity

Viewing bits on stdout

● Implement the function

void print_bits(uint8_t data);

● Should print out the 1s and 0s stored in data to standard output
● For example:

uint8_t x = 4;
print_bits(x); // Should print 00000100

Activity

Viewing bits on stdout

● Implement the function

void print_bits(uint8_t * data, int size);

● Should print out the 1s and 0s stored in the array of length size that
data points to

● For example:

uint16_t x = 4;
print_bits(x, 2); // Should print 00100000 00000000

void print_bits(uint8_t * data, int size){

 uint8_t* copy = malloc(size);

 memcpy(copy, data, size);

 for(int i = 0; i < size; i++){

 for(int j = 0; j < 8; j++){

 uint8_t temp = copy[i];

 temp = temp<<(7-j);

 temp = temp>>7;

 printf("%u", temp != 0 ? 1 : 0);

 }

 printf(" ");

 }

 printf("\n");

 free(copy);

}

Permissions

Recall that permissions for files can be represented as a binary sequence:

111 110 100

Owner can read.
write, and execute Group can read

and write
Everyone can
read

Permissions

Could represent this with a uint16_t

 0000000 111 110 100

Owner can read.
write, and execute Group can read

and write
Everyone can
read

Activity

Permissions

● Implement the function

uint16_t owner_permissions(uint16_t * permissions);

● Should take the Owner permissions and set those same permissions
as the group and every permissions too, return the number

● For example:

uint16_t x = 272; // 000000000 100 010 000

owner_permissions(x); // Should return 000000000 100 100 100

