CSc 352
Processes

Benjamin Dicken



Source Code
e The human-readable text describing what we want a program to
accomplish based on a particular syntax (Say .c or .java)

Executable Program
e The file containing the object code that can be loaded and
executed by the CPU of a computer

Process
e An instance of computation that executes a program over some
lifespan, depending on how long the program takes to execute



Process

A unit of computation. When we want to run some program:
e Create a new process
e Load the program into the process
e Execute
e Close

A process can have either one or multiple threads of execution



Process Contents

Image
e The executable code / variables / values loaded into memory
Memory
e Memory space to be used for the program stack, heap
OS Descriptors
e For example, open file descriptors
Security Attributes
e Process owner, privileges, etc
Processor State
e Content of registers, memory addressing

https://en.wikipedia.org/wiki/Process (computing)



https://en.wikipedia.org/wiki/Process_(computing)

CPU

e The CPU is what executes a process.

e The OS manages which processes get run when

e Nowadays, most CPUs are multi-core, but will use both single-core
and multi-core in examples.



CPU Execution

Multitasking

time

Process A: bash

Process B: grep

OS Scheduler

Process C: Spotify

Process D: Brave

— — — — — — — — — — —



CPU Execution

Multitasking

time

Process A: bash

Process A: bash Process C: Spotify

Process B: grep Process D: Brave

OS Scheduler

Process C: Spotify Process A: bash

Process D: Brave Process B: grep

— — — — — — — — — — —



Multitasking,

Mmulti-core

Process A: bash

Process B: grep

Process C: Spotify

Process D: Brave

(0133
Scheduler

CPU Execution

Core 1

Core 2

time




Multitasking,

Mmulti-core

Process A: bash

Process B: grep

Process C: Spotify

Process D: Brave

(0133
Scheduler

CPU Execution

Core 1

Core 2

Process A7 bash

ProcessC: Spotify

Process B:grep

Process D: Brave

Process B: grep

Process D: Brave

Process C: Spotify

Process A: bash

time




CPU Scheduler

e A Component of the UNIX OS, manages compute-time of the CPU

e CPU scheduling / switching often happens so fast, things *seem™ to
be running “at the same time”

e UNIX: Completely Fair Scheduler (CFS)
o https://en.wikipedia.org/wiki/Completely Fair Scheduler



https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

Interacting with Processes

UNIX systems provide a number of commands we can use to view /
manage / destroy / create processes.

Let’s look at a few.



Viewing Processes

ps allows us to view the ongoing processes on a UNIX system

$ ps -e

PID TTY TIME CMD
1°? 01:04:45 systemd
2 ? 00:00:08 kthreadd
3°? 00:00:00 rcu_gp
4 ? 00:00:00 rcu_par_gp
6 ? 00:00:00 kworker/0:0H-kblockd
9 °? 00:00:00 mm_percpu_wq

10 ? 00:01:14 ksoftirqd/©



Viewing Processes

ps allows us to view the ongoing processes on a UNIX system

$ ps -e
PID

O O Hp WN BR
~J J ~J ~J ~J ~J .

10

The executable this

/ process is running
TTY TIME CMD

CPU time of process

Terminal associated
with process, if any
00:00:00 kworker/0T8H-kblockd

00:00:00 mm_percpu_wq
00:01:14 ksoftirqd/e Process ID number



Signalling Processes
kill allows us to send signals to processes (the default is TERM)

$ kill -1
$ kill process_id



Process Resource Consumption

top allows us to view the resource consumption of processes

$ top

Like a shell-based version of System Monitor



Background Processes

Use the & at the end of a command to put it into the background

$ ./a.out &

Use the fg command to bring the command most recently put in
background back to foreground

fg



Background Processes

#include <stdio.h>
#include <unistd.h>

int main(int argc, char* argv[]) {
for (int 1 = 0; i < 1000; i++) {
printf("%s\n", argv[1]);
sleep(2);
}

return 0;

}



Niceness Value

e On UNIX, processes have a niceness value between -20 and 19
e \alue determines run priority
e Can set and reset this with nice and renice



