
CSc 352

C Programming
files
Benjamin Dicken

The UNIX File System

● The file system is a core component to a UNIX operating system
● There are different specific implementations, but there are shared

general-principles
○ UFS, EXT2, EXT3, EXT4, ZFS, etc, etc

● We will focus on the general principles

https://en.wikipedia.org/wiki/Unix_filesystem

https://en.wikipedia.org/wiki/Unix_filesystem

hello.py resume.pdfphoto.jpg logo.png

root

home binliboptbootdevtmp

bddicken user2

photos documents

ls sed
cpu cdromtemporary

files

Files vs Directories

● A “regular” file (.txt, .c, .out, etc) and a directory are both just files
● A directory files contains a list of inodes including itself, its parent,

and its child inodes
● Try: $ ls -l

https://en.wikipedia.org/wiki/Inode

https://en.wikipedia.org/wiki/Inode

iNodes

● Behind the scenes, a file is
really a node containing a
collection of metadata and
pointers to blocks of the actual
data

● These nodes are called inodes
● The file systems stores a table

or a tree of inodes on the
actual hard drive

https://www.researchgate.net/figure/The-architecture-of-an-inode-in-EXT3-file-system_fig2_258396310

https://www.researchgate.net/figure/The-architecture-of-an-inode-in-EXT3-file-system_fig2_258396310

iNodes pointer structure

● For small files, can store data
within the blocks from the
direct pointers

● For larger files, use some of the
indirect pointers

● Find block size: $ stat -f /
● Inode number: $ ls -i

https://en.wikipedia.org/wiki/Inode_pointer_structure
http://www.linuxintro.org/wiki/Blocks,_block_devices_and_block_sizes

https://en.wikipedia.org/wiki/Inode_pointer_structure
http://www.linuxintro.org/wiki/Blocks,_block_devices_and_block_sizes

Activity

How big will the file be?

How many block pointers will be
required for a text file with 100,000
ascii characters with a block size of
4096 bytes and a block pointer size of
64 bits?

Activity

How big will the file be?

How many block pointers will be
required for a text file with 100,000
ascii characters with a block size of
bytes and a block pointer size of 64
bits?

26
(12 in the inode, 1 indirect, 13 in the
block of pointers)

iNodes

● iNodes themselves are
stored in a known location on
a hard drive

● Can be an array / table
or B / B+ tree

https://xerxes.cs.manchester.ac.uk/comp251/kb/Inodes

https://xerxes.cs.manchester.ac.uk/comp251/kb/Inodes

File-related Commands

stat

df

ls -i

Text File I/O in C

● Can read and write text to and from files
● Similar to reading/writing to stdin/stdout
● stdio/stderr are basically just “files” that have already been opened

for you

#include <stdio.h>

#include <errno.h>

int main() {

 FILE* test_file;

 test_file = fopen("file.txt", "w");

 if (test_file == NULL) {

 fprintf(stderr, "Opening file failed with code %d.\n", errno);

 return 1;

 }

 fprintf(test_file, "Number: %d\n", 25);

 fflush(test_file);

 fclose(test_file);

 return 0;

}

#include <stdio.h>

#include <errno.h>

int main() {

 FILE* test_file;

 test_file = fopen("file.txt", "w");

 if (test_file == NULL) {

 fprintf(stderr, "Opening file failed with code %d.\n", errno);

 return 1;

 }

 fprintf(test_file, "Number: %d\n", 25);

 fflush(test_file);

 fclose(test_file);

 return 0;

}

Many different possible modes
(see man pages)

Same function, different
locations to send the output to

See man pages for fopen,
fprintf, fflush, fclose, fscanf

What is a FILE* ?

Activity

Implement Sum

Write a C program that

1. Prompts the user for a file name
2. Opens this file
3. Reads through each line of file, assuming each

line will have exactly 1 integer number
4. Sum the numbers, save the result to sum.txt

What is a FILE?

A structure containing the necessary information to manage that
particular file

See the standard!

http://port70.net/~nsz/c/c11/n1570.html

http://port70.net/~nsz/c/c11/n1570.html

Activity

What is a FILE?

Investigate on lectura. You can use:

$ locate stdio.h

$ echo '#include <stdio.h>' | cpp -H -o /dev/null 2>&1 | head -n1

Can you figure out what a FILE actually is?

What is a FILE?

/usr/include/stdio.h

/usr/include/x86_64-linux-gnu/bits/types/struct_FILE.h

#include <stdio.h>

int main() {

 FILE* test_file;

 char line[128];

 test_file = fopen("data.txt", "r");

 if (test_file == NULL) {

 fprintf(stderr, "error opening the file.\n");

 return 1;

 }

 while (fgets(line, 127, test_file) != NULL) {

 printf(">%s<\n", line);

 }

 fclose(test_file);

 return 0;

}

Third parameter for fgets is just
a FILE*

Function summary

● fopen - For opening files, getting FILE pointers.
Can open in various modes

● fscanf / fgets - For reading from files
● fprintf - For writing to a file
● fflush - Ensure that any buffered content gets

written to the file stream
● fclose - Close the file

Activity

Implement toupper.c

Write a C program that

1. Prompts the user for two input files names
2. The program should read in the lines from the

first, convert alphabetical character to CAPS,
and write to the second file

3. Close files when done

File Permissions

Each file can have designated permissions for owner, group, and
everyone

For each of those, can specify if allowed to read and/or write and/or
execute

ls -l test.c or stat test.c

File Permissions

lectura:> stat test.c

 File: test.c

 Size: 175 Blocks: 14 IO Block: 131072 regular file

Device: 43h/67d Inode: 4570337 Links: 1

Access: (0751/-rwxr-x--x) Uid: (14358/bddicken) Gid: (0/ root)

Access: 2022-02-21 12:37:09.281929146 -0700

Modify: 2022-02-21 12:37:09.283156247 -0700

Change: 2022-02-21 12:55:26.879605124 -0700

File Permissions

lectura:> stat test.c

 File: test.c

 Size: 175 Blocks: 14 IO Block: 131072 regular file

Device: 43h/67d Inode: 4570337 Links: 1

Access: (0751/-rwxr-x--x) Uid: (14358/bddicken) Gid: (0/ root)

Access: 2022-02-21 12:37:09.281929146 -0700

Modify: 2022-02-21 12:37:09.283156247 -0700

Change: 2022-02-21 12:55:26.879605124 -0700

Owner can read, write, exec
Group can read and exec
Everyone can exec

File Permissions

rwxr-x--x

 751

 111101001

Chmod

Use chmod to specify permissions

$ chmod 751 test.c

Sets permissions for test.c to 111101001 or rwxr-x--x

Activity

Chmod

Write the chmod command to set
the permissions of the file test.txt
to be:

r-x--xrwx

