
CSc 352

C Programming
2D Arrays
Benjamin Dicken

2D Array

int main() {

 int numbers[2][2] = { {1, 2}, {3, 4} };

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 2; j++) {

 printf("Element at address %p ",

 &numbers[i][j]);

 printf("is %d\n", numbers[i][j]);

 }

 }

}

2D Array

int main() {

 int numbers[2][2] = { {1, 2}, {3, 4} };

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 2; j++) {

 printf("Element at address %p ",

 &numbers[i][j]);

 printf("is %d\n", numbers[i][j]);

 }

 }

}

numbers
(0x00….010)

address value

0x00..10 1

0x00..14 2

0x00..18 3

0x00..1c 4

2D Array Memory Layout

The memory layout for a 2D array is one, contiguous block of memory
sized N * M * T where N is the number of rows, M is the number of
columns, and T is the size of the type of each element.

With these “basic” 2D arrays, each row is of same length, even if not
given a value explicitly

2D Array rows

int main() {

 int numbers[3][4] = { {1, 2, 3, 4},

 {50, 75}, {10, 20, 100} };

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 printf("Element at address %p ",

 &numbers[i][j]);

 printf("is %d\n", numbers[i][j]);

 }

 }

}

numbers
(0x00….010)

address value

0x00..10 1

0x00..14 2

0x00..18 3

0x00..1c 4

0x00..20 50

0x00..24 75

0x00..28 0

0x00..2c 0

0x00..30 10

0x00..34 20

0x00..38 100

0x00..3c 0

2D Array rows

int main() {

 int numbers[3][4] = { {1, 2, 3, 4},

 {50, 75}, {10, 20, 100} };

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 printf("Element at address %p ",

 &numbers[i][j]);

 printf("is %d\n", numbers[i][j]);

 }

 }

}

numbers
(0x00….010)

address value

0x00..10 1

0x00..14 2

0x00..18 3

0x00..1c 4

0x00..20 50

0x00..24 75

0x00..28 0

0x00..2c 0

0x00..30 10

0x00..34 20

0x00..38 100

0x00..3c 0

Wasted space

2D Array Indexing

To access an element at a pair of 2D indexes, such as:

int array[t][r] = {....}

....

printf("%d", array[x][y]);

The program can take the base address of array and add ((r*x)+y) to
get to the address of the requested element.

Activity

What will this print?

int main() {

 int x[4] = {2, 1, 100, -1};

 int y[2] = {5, 7};

 int z[3] = {2, 8, -1};

 int* two_d[2] = {x, z};

 for (int i = 0; i < 2; i++) {

 for (int j = 0; two_d[i][j] != -1; j++) {

 printf("Element at address %p ",

 &two_d[i][j]);

 printf("is %d\n", two_d[i][j]);

 }

 }

 printf("%p %p %p %p", x, y, z, two_d);

}

Assuming that these
arrays are places in
sequence on the stack.

Array of Pointers two_d
(0x00….034)

address value

0x00..10 2

0x00..14 1

0x00..18 100

0x00..1c -1

0x00..20 5

0x00..24 7

0x00..28 2

0x00..2c 8

0x00..30 -1

0x00..34 0x00..10

0x00..3c 0x00..28

int main() {

 int x[4] = {2, 1, 100, -1};

 int y[2] = {5, 7};

 int z[3] = {2, 8, -1};

 int* two_d[2] = {x, z};

 for (int i = 0; i < 2; i++) {

 for (int j = 0; two_d[i][j] != -1; j++) {

 printf("Element at address %p ",

 &two_d[i][j]);

 printf("is %d\n", two_d[i][j]);

 }

 }

 printf("%p %p %p %p", x, y, z, two_d);

}

Array of Pointers two_d
(0x00….034)

address value

0x00..10 2

0x00..14 1

0x00..18 100

0x00..1c -1

0x00..20 5

0x00..24 7

0x00..28 2

0x00..2c 8

0x00..30 -1

0x00..34 0x00..10

0x00..3c 0x00..28

int main() {

 int x[4] = {2, 1, 100, -1};

 int y[2] = {5, 7};

 int z[3] = {2, 8, -1};

 int* two_d[2] = {x, z};

 for (int i = 0; i < 2; i++) {

 for (int j = 0; two_d[i][j] != -1; j++) {

 printf("Element at address %p ",

 &two_d[i][j]);

 printf("is %d\n", two_d[i][j]);

 }

 }

 printf("%p %p %p %p", x, y, z, two_d);

}

Activity

Write the Program

● Write a program that reads paragraphs of text
from standard input until EOF

● Paragraphs are separated by a blank line
● Program should determine the most-occurring

word in each paragraph
● Should use a 2D array
● Max line width: 128 chars
● Max lines per paragraph: 100

There once was a bear
that lived by the sea in a tiny house.

He wanted to go into town to get some
ice-cream. However, he knew people in town
would be scared of him. Those town people
are scared easily.

He came up with a plan to get around
this. The plan was to dress up as a man.
The plan worked, and he was able to get
ice-cream.

story.txt

Most-occurring word from paragraph 1: a
Most-occurring word from paragraph 2: town
Most-occurring word from paragraph 3: plan

output

