
Computer Science 352 Spring 2023
Programming Assignment 5
Due 3/3/2023 by 7pm

This PA for CS 352 has 2 parts, and part 2 depends on code from part 1. The first part will require you to write
a simple C library for helping with arrays. For this, you should name the files arrayz.h and arrayz.c. The
next part will require you to write a C program named basketball.c that will rely on the arrayz library. This
program will be responsible for doing some analysis on basketball based on content from a data file.

For the project, you should end up with the following directory / file structure:

pa5

├── test.c (optional)
├── makefile
├── arrayz.c
├── arrayz.h
└── basketball.c

The makefile should have three rules: one for arrayz.o, one for basketball, and one for clean. The
arrayz.o rule should compile arrayz.c with the required gcc flags and produce a library file named arrayz.o

in the current working directory. The basketball rule should compile basketball.c with the required gcc
flags and produce an executable named basketball in the current working directory. The clean rule should
delete the arrayz.o and basketball files from the current working directory.

Arrayz

For this part of the assignment, you must implement a C library named arrayz (array.h for the header
information, array.c for the implementation). The purpose of this library is to have a collection of functions
that can perform calculations on C arrays. For this library, you should implement the following:

● long sum(long values[]); - Return the sum of every element in values

● long minil(long values[]); - Return the index of the minimum value in values

● long minid(double values[]); - Return the index of the minimum value in values

● long maxil(long values[]); - Return the index of the maximum value in values

● long maxid(double values[]); - Return the index of the maximum value in values

● void printal(long values[]); - Print the elements in values

○ Formatted as: length ARRAY_LENGTH array: EL1, EL2, …, ELN

● void printad(double values[]); - Print the elements in values

○ Formatted as: length ARRAY_LENGTH array: EL1, EL2, …, ELN

● double mean(long values[]); - Return the mean (average) of the elements in values

○ Note: return a double, the result may not be a whole number.
● double sdev(long values[]); - Return the standard deviation of the elements in values

○ If you don’t know what standard deviation is, or how to calculate it, see this site:
https://www.mathsisfun.com/data/standard-deviation-formulas.html

https://www.mathsisfun.com/data/standard-deviation-formulas.html

You should add each of these function declarations into the header file named arrayz.h. It is also up to you
to ensure that you have a clear comment in the header file for each of these functions. You may add more
functions if you want, but you must have at least these. You should then #include this header file into a file
named arrayz.c, which is where you should implement each function.

For all of these functions, you should assume that the first element in the array is used to store the number of
remaining elements in the array. For example, say we wanted to pass the data 20, 25, 20, 30 into one of these
functions. The actual array should be length 5, and should have as its content: {4, 20, 25, 20, 30}. The 4
as the first element represents the number of elements in the array following. This is used so that the functions
can avoid over-writing or accessing memory that it should not.

The autograder may have tests for some or all of these individual functions, you should implement and test
each thoroughly. If you want, you can create another file called test.c and put code in there to test the library.

Basketball Stats

For the next part, you should write a C program named basketball.c. This program will generate a report
about NBA basketball players, based on data that it will read in from a text file. This program can and should
use several functions from the arrayz library. In particular, it must at least use the min / max functions, the mean

function, and the sdev function. You may also want to use some of the print functions from the library as you
develop and debug your program.

This program should expect to have *exactly* one command-line argument, that being the path (absolute or
relative) to the file that the program will open and process. If the program does get exactly one argument, it
should print “expects 1 command line argument” to standard error and then return a nonzero. The
program should expect that the file will be a text file with zero or more lines, and each line will be formatted as
follows:

PLAYER_NAME[P1, R1, A1][P2, R2, A2],...,[PN, RN, AN]

The program is allowed to expect that the file is correctly formatted. It does not have to handle incorrectly
formatted data. The PLAYER_NAME will be the name of the NBA player, first and last, separated by a space.
Immediately following the player will be a sequence of three numbers within brackets. The three numbers
represent that player's points scored, rebounds, and assists for one game played. Thus, each triple of numbers
represents a simplified stat line from one game.

A simple example of what in input file’s contents could look like:

Devin Booker[25,5,7][27,8,5][29,5,5][28,3,10]

James Harden[10,2,4][32,8,10][30,13,3][40,5,15]

Deandre Ayton[10,15,2][15,10,3][20,9,1][25,15,5]

Chris Paul[10,5,15][20,4,14][17,2,15][15,5,13]

A few other things you may assume about these input files:

● A player name will not be longer than 50 characters.
● A player will never have 100 or more points, rebounds, or assists in a single game. In other

words, the points, rebounds, and assists will always be a 1 or 2 digit number. (Wilt Chamberlain
breaks this rule)

● A given line will not have more than 100 games on it
● The file will contain 100 players (lines) or less

As a part of the program, you should open up the input file and read through it line-by-line. As you read through
the stats for each player, you should calculate the mean (average) and standard deviation for each stat
category (sdev points, sdev rebounds, sdev assists, mean points, mean rebounds, mean assists) and store
these into an array for future use.

You should calculate these values for every player in the file, and as you go you should store the results for
each player into various array(s). After you have done so, you will need to determine the player the meets the
criteria for the following twelve categories:

● The most consistent scorer, rebounder, and assister (The players with lowest standard deviation in
these categories)

● The least consistent scorer, rebounder, and assister (The players with highest standard deviation in
these categories)

● The best scorer, rebounder, and assister (players with the highest average in these categories)
● The worst scorer, rebounder, and assister (players with the lowest average in these categories)

Say that we have a file named players.data that contains the example player content shown earlier in the
spec with Devin Booker, James Harden, Deandre Ayton, and Chris Paul. If we were to implement the program
correctly and then run it with this data file, we should get the following:

$./basketball players.data

most consistent scorer: Devin Booker

most inconsistent scorer: James Harden

highest scorer: James Harden

lowest scorer: Chris Paul

most inconsistent rebounder: James Harden

most consistent rebounder: Chris Paul

highest rebounder: Deandre Ayton

lowest rebounder: Chris Paul

most inconsistent assister: James Harden

most consistent assister: Chris Paul

lowest assister: Deandre Ayton

highest assister: Chris Paul

Every time the program is run with an input file that has at least one player in it, it should print out exactly 12
lines of output. The formatting of each line must match what is shown in this spec, though the ordering does
not matter. It is your responsibility to ensure that your program is well-tested with various input files.

https://en.wikipedia.org/wiki/Wilt_Chamberlain's_100-point_game
https://en.wikipedia.org/wiki/Wilt_Chamberlain's_100-point_game

There will be a small number of test cases visible before grades are published. You should do your best to
pass each one. Also keep in mind that there will be some test cases that get revealed after it is graded, so you
should try your best to test your code thoroughly.

Compiling

This PA is a bit unique since you are going to be writing a library, and then using the functionality from that
library in your basketball program. Due to this, compilation can happen in two separate steps. The first step is
to compile the arrayz.c file with a special flag, -c. This option tells the compiler to compile and assemble the
program, but to skip the linking step. So, you should run:

$ gcc -Wall -Werror -std=c11 -c arrayz.c

This should produce a file named arrayz.o. After this file has been generated, you can compile basketball.c
and link it with the arrayz.o library:

$ gcc -Wall -Werror -std=c11 -o basketball basketball.c arrayz.o -lm

As long as there were no errors, you should have a file named basketball in the current directory that is the
executable file for the basketball program. You can run ./basketball file_name to test it out!

Submitting Your PA

After you have completed PA, double check that the file structure and file / directory names match what is
shown in the project overview on the first page. Before you submit, you should ensure that your code compiles
and runs correctly on lectura, ensure you follow the rules from the style guide, and remove all files from the
pa5 directory and subdirectories other than the ones shown on the first page of this spec. Do not includes test
files, executable files, and other file types. If you are on a mac, you should avoid zipping the file on the mac
because it might include one or more hidden / extra files. Instead, zip on lectura.

Once you are ready to submit, zip up the pa5 directory by running:

$ zip -r pa5.zip ./pa5

Then, turn this file to the PA 5 dropbox on gradescope. There will be some test cases that will not be visible
until after the grades get published. Test your program thoroughly!

