
CSc 352

Processes
Russell Lewis (sub for Benjamin Dicken)



What is a Process?

● A process is a container for one instance of a program
○ If you run the same program multiple times, you get multiple 

processes

● A process is isolated from other processes on the same machine
○ Can’t access their memory
○ Can’t call their code

● A process is also isolated from system resources
○ No direct access to disk, network, keyboard, display
○ No ability to control other processes



The Simplest Virtual Machine

● Each process acts as if it is the only program running on the machine
○ Gobbles up CPU
○ Uses memory blindly

● Operating system’s “kernel” makes this safe
○ Time-slicing
○ Virtual memory

■ Declares which addresses are allowed
■ Controls how to interpret the valid addresses



System Calls

● A system call is a way for the program to interact with the OS kernel
○ Not a function call, but often acts like one

● Through system calls, programs can:
○ Access files
○ Access devices
○ Talk on the network
○ Ask for virtual memory changes
○ Create / monitor / kill other processes
○ Ask the kernel to do anything you can imagine



● Commonly used system calls:
open()/close() - file handling
socket() - first step in networking
chdir() - change directory
pipe() - prepares for pipelined processes
fork()/exec() - create new programs
mmap()/munmap() - change virtual memory
signal()/sigaction() - send/receive “signals” between procs

● man syscalls - Linux has 100s of syscalls!

Example System Calls



PID, PPID

● Each process has a PID (process ID)
○ Positive integer, usually small
○ Assigned when the process is created, never changed

getpid() - returns the PID of your current process

● Each process has exactly one parent process
○ Stays the same forever, unless the parent dies (then set to 1)
○ Parent has special rights to control the process

getppid() - returns the parent PID



ps

● The command-line tool ps shows the list of current processes
ps - Show processes related to current shell
ps -f - Also show PPID, other details
ps -ef- Show all processes on current box



Activity

ps

● The command-line tool ps shows the list of current processes
ps - Show processes related to current shell
ps -f - Also show PPID, other details
ps -ef- Show all processes on current box

● Let’s log onto Lectura and do some experiments together:
○ Compare ps from different logins (including 2 from the same 

person)
○ Use ps -ef with grep to get information about one use
○ Lots of students run the same command - and we’ll use grep to 

find all of them



Activity

top

● top is a handy tool for examining the current load on your machine
○ Run without arguments

● Let’s experiment!  Inside top, what do each of these commands do?
h - ???
M - ???
u - ???
s - ???
q - ???



top

● top is a handy tool for examining the current load on your machine
○ Run without arguments

● Let’s experiment!  Inside top, what do each of these commands do?
h - help
M - sort by memory, not CPU usage
u - limit list to a single user (type username)
s - control update speed (type # o seconds)
q - quit



kill

● kill allows you to terminate a running process
kill PID - Ordinary kill, works most times
kill -9 PID - Use only in emergencies

● In truth, kill is just sending a signal to a process
○ Signals are 1-bit messages or event notifications
○ kill sends SIGTERM to ask a process to terminate itself

● Can use kill to send any signal to a process
kill -USR1 PID - Sends USR1 to the process



kill() syscall

● kill() syscall is how you send signals from inside C code
int kill(pid_t pid, int sig);

● It isn’t uncommon for some simple syscalls to have wrappers that are 
command-line utilities

kill, wait, chroot, chown, chmod, mknod, etc.

● Different man pages for the syscall and the command-line tools
man 2 kill - syscall
man 1 kill - command-line tool



wait

● wait blocks until a child of the current process has completed
● Useful if you kick off something in the background with &

sleep 10 &
wait



Creating Processes with the Shell 

● What happens when you run a command on the shell?
ls -al foo bar baz

1. bash searches for the program (using your PATH variable)
2. New process created with fork()
3. Child process uses exec() to run the ls command
4. Parent process uses wait() to block until the child finishes

● How to run in the background (with & )?  We simply skip step 4!



Why fork() and exec()?

● Why a two-step process for creating a new program?
○ fork() - creates the new process
○ exec() - replaces the process with a new program

● To understand this, let’s start by looking at how fork() works…



fork() in Action

Memory

Process A
(bash)

bash is running.

It has some memory 
(code+data).

It also has some open files.

(Actually, there is a ton of 
process state, that we won’t 
detail here.)

Files Files



fork() in Action

Files

Memory

Process A
(bash)

bash calls fork().

The OS creates a new process.  It 
is identical to the old.

Memory

Process B
(bash)

Files

Files Files



fork() in Action

Files

Memory

Process A
(bash)

Memory

Process B
(bash)

Files

Files Files Files

bash can now close some of the files, and open new ones.  
(This is how we handle redirection, and pipelines.)

In general, bash can change many things about the process.



fork() in Action

Files

Memory

Process A
(bash)

Process B
(---)

Files

Files Files

bash (in the child) calls exec().

The memory in the child process is 
thrown away…

Memory



fork() in Action

Files

Memory

Process A
(bash)

Process B
(my_prog)

Files

Files Files

…the code for my_prog is loaded 
into the child process memory…

code



fork() in Action

Files

Memory

Process A
(bash)

Process B
(my_prog)

Files

Files Files

…the data is initialized, and the 
new program starts to run.

code data



fork() in Action

Files

Memory

Process A
(bash)

Process B
(my_prog)

Files

Files Files

Note that exec() did not change the 
files (or many other things about basic 
process state).

This is how bash sets up a new proc.

code data



Pipelines

● What if there are multiple processes in a pipeline?
ls -al | grep foo | cut -f3 -d’ ’

● One child process per program in the pipeline
● Use pipe() syscall to create pipelines from each to the next
● bash waits on the last in the pipeline to finish



Why fork() and exec()?

● fork() and exec() are separate operations
○ Allows the code to modify the child process before the new code 

takes over
○ Vastly simplifies the parameters to exec() !


