
CSc 352

Valgrind
Russell Lewis (sub for Benjamin Dicken)

Announcements

● Ben is on paternity leave
○ Back in 3 weeks (Apr 4)

● New Lecture form:
○ 50 minutes in class
○ 25 minutes by video (posted next day)

■ https://www.youtube.com/playlist?list=PL-F3IhGTDSSqe5cM
DqrLdHkG0bleuA_xq

○ Slides posted on D2L
● My 352 Office Hours: 11am-noon, MWF
● Mask mandate changing next week (21 Mar)

https://www.youtube.com/playlist?list=PL-F3IhGTDSSqe5cMDqrLdHkG0bleuA_xq
https://www.youtube.com/playlist?list=PL-F3IhGTDSSqe5cMDqrLdHkG0bleuA_xq

Recap:

● void* malloc(size_t size);
○ Allocates size bytes and returns the pointer to it, or NULL if failed

to alloc
● void* calloc(size_t n_items, size_t size);

○ Allocates (n_items* size) bytes and returns the pointer to it, or
NULL if failed to alloc

● void free(void * ptr);

○ Frees the memory pointer to by ptr so that your program can no
longer rely on having access to that memory

Activity

Bugs!

The program on the next slide is buggy.

● Q1: What is the bug?
● Q2: Will you notice the bug (most times)? Why or why not?

Activity

Bugs!
int main()

{

 int *buf = malloc(3*sizeof(int));

 buf[0] = 123;

 buf[1] = 456;

 buf[2] = 789;

 printf("%d %d %d\n",

 buf[0],buf[1],buf[2]);

 printf("\n");

 free(buf);

 printf("%d\n", buf[0]);

 printf("%d\n", buf[1]);

 printf("%d\n", buf[2]);

 printf("\n");

 buf[0] = 999999;

 printf("%d\n", buf[0]);

 printf("%d\n", buf[1]);

 printf("%d\n", buf[2]);

 return 0;

}

live_valgrind_act1.c

Bugs! (solution)

● Data that you have free()d no longer belongs to you!
○ Must never attempt to use a buffer after you’ve freed it

● Will you notice the bug? Maybe.
○ free() may leave the buffer untouched
○ Or, it can change the contents
○ Might give to another thread (if multithreaded)
○ Debug tools might gripe

Activity

De-Bug!

● Can we debug the program without digging deep into the source
code?

● Run it with valgrind:
valgrind ./my_program_name

● What debug information does it give?

russelll@lectura:~$ valgrind ./lec_13_valgrind_act
==4076377== Memcheck, a memory error detector
==4076377== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==4076377== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==4076377== Command: ./foo
==4076377==
123
456
789

... output continues on next slide ...

● valgrind tells you that it is
running.● Your program does its

ordinary work.

... continued ...

==4076377== Invalid read of size 4
==4076377== at 0x109233: main (in /home/russelll/foo)
==4076377== Address 0x4a5b040 is 0 bytes inside a block of size 8 free'd
==4076377== at 0x483CA3F: free (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x109222: main (in /home/russelll/foo)
==4076377== Block was alloc'd at
==4076377== at 0x483B7F3: malloc (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x1091BE: main (in /home/russelll/foo)
==4076377==
x: 123

... output continues on next slide ...

● valgrind has detected a
runtime error. It is telling you
that you are reading
something you no longer own.

... continued ...

==4076377== Invalid read of size 4
==4076377== at 0x109233: main (in /home/russelll/foo)
==4076377== Address 0x4a5b040 is 0 bytes inside a block of size 8 free'd
==4076377== at 0x483CA3F: free (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x109222: main (in /home/russelll/foo)
==4076377== Block was alloc'd at
==4076377== at 0x483B7F3: malloc (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x1091BE: main (in /home/russelll/foo)
==4076377==
x: 123

... output continues on next slide ...

● This tells you where in your
code the error occurred.

● We’ll get more details soon.

... continued ...

==4076377== Invalid read of size 4
==4076377== at 0x109233: main (in /home/russelll/foo)
==4076377== Address 0x4a5b040 is 0 bytes inside a block of size 8 free'd
==4076377== at 0x483CA3F: free (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x109222: main (in /home/russelll/foo)
==4076377== Block was alloc'd at
==4076377== at 0x483B7F3: malloc (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x1091BE: main (in /home/russelll/foo)
==4076377==
x: 123

... output continues on next slide ...

● This tells you what pointer you
used, and why it is invalid.
Notice that it tells us that we
are at the very start of a free’d
block.

... continued ...

==4076377== Invalid read of size 4
==4076377== at 0x109233: main (in /home/russelll/foo)
==4076377== Address 0x4a5b040 is 0 bytes inside a block of size 8 free'd
==4076377== at 0x483CA3F: free (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x109222: main (in /home/russelll/foo)
==4076377== Block was alloc'd at
==4076377== at 0x483B7F3: malloc (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x1091BE: main (in /home/russelll/foo)
==4076377==
x: 123

... output continues on next slide ...

● This tells us what code free()d
the block.

... continued ...

==4076377== Invalid read of size 4
==4076377== at 0x109233: main (in /home/russelll/foo)
==4076377== Address 0x4a5b040 is 0 bytes inside a block of size 8 free'd
==4076377== at 0x483CA3F: free (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x109222: main (in /home/russelll/foo)
==4076377== Block was alloc'd at
==4076377== at 0x483B7F3: malloc (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x1091BE: main (in /home/russelll/foo)
==4076377==
123

... output continues on next slide ...

● This tells us what code
malloc()d the block.

... continued ...

==4076377== Invalid read of size 4
==4076377== at 0x109233: main (in /home/russelll/foo)
==4076377== Address 0x4a5b040 is 0 bytes inside a block of size 8 free'd
==4076377== at 0x483CA3F: free (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x109222: main (in /home/russelll/foo)
==4076377== Block was alloc'd at
==4076377== at 0x483B7F3: malloc (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x1091BE: main (in /home/russelll/foo)
==4076377==
123

... output continues on next slide ...

● valgrind will allow your
program to continue running.
So we go ahead and print
what we read.

... continued ...

==4076377== Invalid read of size 4
==4076377== at 0x10924C: main (in /home/russelll/foo)
==4076377== Address 0x4a5b044 is 4 bytes inside a block of size 8 free'd
==4076377== at 0x483CA3F: free (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x109222: main (in /home/russelll/foo)
==4076377== Block was alloc'd at
==4076377== at 0x483B7F3: malloc (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4076377== by 0x1091BE: main (in /home/russelll/foo)
==4076377==
456

... output continues on next slide ...

● valgrind will report each
error it finds. We read three
fields from the free()d block,
so we get three errors.

... continued ...

==175506== Invalid write of size 4
==175506== at 0x10928D: main (lec_13_valgrind_act1.c:22)
==175506== Address 0x4a5b040 is 0 bytes inside a block of size 12 free'd
==175506== at 0x483CA3F: free (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==175506== by 0x10922B: main (lec_13_valgrind_act1.c:15)
==175506== Block was alloc'd at
==175506== at 0x483B7F3: malloc (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==175506== by 0x1091BE: main (lec_13_valgrind_act1.c:7)
==175506==

... output continues on next slide ... ● valgrind will also tell us if
we write to buffers that we’ve
free()d

... continued ...

==4076377==
==4076377== HEAP SUMMARY:
==4076377== in use at exit: 0 bytes in 0 blocks
==4076377== total heap usage: 2 allocs, 2 frees, 1,032 bytes allocated
==4076377==
==4076377== All heap blocks were freed -- no leaks are possible
==4076377==
==4076377== For lists of detected and suppressed errors, rerun with: -s
==4076377== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)
russelll@lectura:~$

● valgrind gives a final
report. We free()d all of the
memory we malloc()d, but we
had two errors along the way.

● valgrind was able to tell us what function we were running, but
we’d like more details.

● We can turn on debugging information as necessary
gcc -Wall -Werror -std=c11 -g foo.c -o foo

● Typically not turned on for “production” builds
○ May slow down your program (though not a lot)
○ Will make the executable larger
○ May give hackers more insight into your program

Better Debug Data

● Debug data is useful to a variety of tools
○ gdb
○ valgrind
○ Perhaps useful if debugging a crash report

Better Debug Data

==4078464== Invalid read of size 4
==4078464== at 0x109233: main (foo.c:25)
==4078464== Address 0x4a5b040 is 0 bytes inside a block of size 8 free'd
==4078464== at 0x483CA3F: free (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4078464== by 0x109222: main (foo.c:22)
==4078464== Block was alloc'd at
==4078464== at 0x483B7F3: malloc (in
/usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==4078464== by 0x1091BE: main (foo.c:14)
==4078464==
x: 123

● valgrind can give you exact
line numbers in its bug
reports.

Activity

Brainstorm!

● Talk with your neighbors nearby. Let’s see if we can brainstorm lots
and lots of possible memory-related errors. Then, we’ll see how many
of them valgrind can help us find.

● Each group should come up with at least 5 different errors to check
for. Be creative! Can you think of the weirdest errors?

○ malloc() related
○ Stack related
○ Constants

● For each error, think about how to write a small program which would
give an example of this error, and we’ll try to test it using valgrind.

● Read/write NULL

● Random pointer (reads, writes)
● Read/write before or after a malloc() buffer
● Read/write before or after a buffer on the stack
● Read/write buffer (on stack) returned by another function

● strlen() on malloc() buffer, full of non-zero data
● strcpy() that overruns malloc() buffer
● strcpy() where src,dest overlap each other

My Ideas (page 1)

● Read of uninitialized malloc() space
● Read of uninitialized stack space

● Write to string constant

● Use data after free() (reads, writes) already done
● Double free()
● Never free()
● free() wrong address (inside buf, outside buf, globals, stack)

My Ideas (page 2)

● Use data after free() (reads, writes) already done
● Double free()
● Never free()
● free() wrong address (inside buf, outside buf, globals, stack)

● realloc() of wild pointer
● realloc() of free()d pointer
● realloc() of offset *into* a current buffer
● realloc() of stack memory, or globals

My Ideas (page 3)

Activity

Test It Out

● I’ve created a Google Doc for the entire class to share; see D2L

● Divide into small groups
○ Each group takes one of the problems (your ideas, or mine)
○ Write a small program that gives an example of the bug
○ Compile & run it

■ Is the error obvious, or silent? Can you explain why?
■ If you run under valgrind, does that change?

○ Drop your code (with a summary of your results) into the Doc

● We’ll review examples as a class, once they are ready

