
CSc 352

C Programming
GDB, files
Benjamin Dicken

Announcements

Exam 1 Next week!
Variety of question types (programming, explanation, FIB, etc)
Will post a topic list, but not a study guide

No PA due on Friday the 25th

Key options for gdb

break - sets a stopping points within the code

run - starts the program running

next / step - walk through the program

bt - backtrace

frame - show information for a stack frame (info frame X)

print - display the value of a variable / expr

Activity

Debug

● Download code.c and makefile from the class website
● Without modifying the makefile or C file, determine:

○ What could cause this program to crash?
○ Why?
○ Use GDB

● I’ll give you 5-7 minutes to download, test, explore with GDB, then
we can discuss

The UNIX File System

● The file system is a core component to a UNIX operating system
● There are different specific implementations, but there are shared

general-principles
○ UFS, EXT2, EXT3, EXT4, ZFS, etc, etc

● We will focus on the general principles

https://en.wikipedia.org/wiki/Unix_filesystem

https://en.wikipedia.org/wiki/Unix_filesystem

hello.py resume.pdfphoto.jpg logo.png

root

home binliboptbootdevtmp

bddicken user2

photos documents

ls sed
cpu cdromtemporary

files

Files vs Directories

● A “regular” file (.txt, .c, .out, etc) and a directory are both just files
● A directory files contains a list of inodes including itself, its parent,

and its child inodes
● Try: $ ls -l

https://en.wikipedia.org/wiki/Inode

https://en.wikipedia.org/wiki/Inode

iNodes

● Behind the scenes, a file is
really a node containing a
collection of metadata and
pointers to blocks of the actual
data

● These nodes are called inodes
● The file systems stores a table

or a tree of inodes on the
actual hard drive

https://www.researchgate.net/figure/The-architecture-of-an-inode-in-EXT3-file-system_fig2_258396310

https://www.researchgate.net/figure/The-architecture-of-an-inode-in-EXT3-file-system_fig2_258396310

iNodes pointer structure

● For small files, can store data
within the blocks from the
direct pointers

● For larger files, use some of the
indirect pointers

● Find block size: $ stat -f /

https://en.wikipedia.org/wiki/Inode_pointer_structure
http://www.linuxintro.org/wiki/Blocks,_block_devices_and_block_sizes

https://en.wikipedia.org/wiki/Inode_pointer_structure
http://www.linuxintro.org/wiki/Blocks,_block_devices_and_block_sizes

Activity

How big will the file be?

How many block pointers will be
required for a text file with 100,000
ascii characters with a block size of
4096 bytes and a block pointer size of
64 bits?

Activity

How big will the file be?

How many block pointers will be
required for a text file with 100,000
ascii characters with a block size of
4096 bytes and a block pointer size of
64 bits?

26
(12 in the inode, 1 indirect, 13 in the
block of pointers)

File-related Commands

stat

df

ls -i

Text File I/O in C

● Can read and write text to and from files
● Similar to reading/writing to stdin/stdout
● stdio/stderr are basically just “files” that have already been opened

for you

#include <stdio.h>

#include <errno.h>

int main() {

 FILE* test_file;

 test_file = fopen("file.txt", "w");

 if (test_file == NULL) {

 fprintf(stderr, "Opening file failed with code %d.\n", errno);

 return 1;

 }

 fprintf(test_file, "Number: %d\n", 25);

 fflush(test_file);

 fclose(test_file);

 return 0;

}

#include <stdio.h>

#include <errno.h>

int main() {

 FILE* test_file;

 test_file = fopen("file.txt", "w");

 if (test_file == NULL) {

 fprintf(stderr, "Opening file failed with code %d.\n", errno);

 return 1;

 }

 fprintf(test_file, "Number: %d\n", 25);

 fflush(test_file);

 fclose(test_file);

 return 0;

}

Many different possible modes
(see man pages)

Same function, different
locations to send the output to

See man pages for fopen,
fprintf, fflush, fclose, fscanf

What is a FILE* ?

What is a FILE?

A structure containing the necessary information to manage that
particular file

See the standard!

http://port70.net/~nsz/c/c11/n1570.html

http://port70.net/~nsz/c/c11/n1570.html

Activity

What is a FILE?

Investigate on lectura. You can use:

$ locate stdio.h

$ echo '#include <stdio.h>' | cpp -H -o /dev/null 2>&1 | head -n1

Can you figure out what a FILE actually is?

What is a FILE?

/usr/include/stdio.h

/usr/include/x86_64-linux-gnu/bits/types/struct_FILE.h

Activity

Implement Sum

Write a C program that

1. Prompts the user for a file name
2. Opens this file
3. Reads through each line of file, assuming each

line will have exactly 1 integer number
4. Sum the numbers, save the result to sum.txt

