CSc 352

C Programming
Pointers and Arrays

Benjamin Dicken



Activity

char char_var = '\0';
int int_var = 0; . .
long long_var = 0; What WI” prlnt?

char * char_ptr = &char_var;
int * int_ptr = &int_var;
long * long ptr = &long var;

long one, two;

one = (long) char_ptr; two = (long) (char_ptr+l);
printf("two minus one: %1d\n", two - one);

one = (long) int_ptr; two = (long) (int_ptr+1l);
printf("two minus one: %1d\n", two - one);

one = (long) int_ptr; two = (long) (long ptr+l);
printf("two minus one: %1d\n", two - one);



Activity

int values[10] = {0, 50, 100, 150, 200,
250, 300, 350, 400, 450};

int 1 = 0;

while (i < 5) {
int a = *(values+i) + *(values+9-1i);
printf("%d ", a);
i += 1;

}

printf("\n"); What will print?



The a rgs array This can be thought of as:
“A pointer to an array of
pointers, each of which points

il GEREO) A to a sequence of characters”

}

\/

int main(int argc, char * argv[]) {

}



$ ./a.out -v hi there

argv

ox1.

.31

ox1.

.45

Ox1. .21

ox1.

.04

ox1.

.71

Ihl

l\el




Activity

void another (int array[]) { What W|” happen?

long size = sizeof(array);
printf("size: %1d\n", size);

} (without -Wall -Werror)

int main() {
int values[10] = {0, 50, 100, 150, 200,
250, 300, 350, 400, 450};
long size = sizeof(values);
printf(“size: %1d\n", size);
another(values);
return 0;



scanf and fgets with pointers
Remember lines such as these?

int x = 0;
char buffer[32]; o
fgets(buffer, 31, stdin) Providing the fgets / scanf

scanf("%31s", buffer) = functions a po_mter to the
oy m memory location to store
scanf("%d", &x)

the input value




Activity
What is wrong with this code?
What might happen?

Assume that these three

char last[10]; arrays are allocated in
char middle[10] ;‘f sequence in space on the
char first[10]; stack (10 bytes, then the
printf("first name:\n"); next 10, then the next 10)
scanf("%s", first);

printf("middle name:\n");

scanf("%s", middle);

printf("last name:\n");

scanf("%s", last);

printf("%s %s %s", first, middle, last);




L -values and R-values

e An L-value is a location and can be used on the left-hand side of an
equals sign
o Arithmetic-type variables, array elements, pointers
o Also structs (later)

e An R-value is something that does not actually have a stored location
iIn memory

o Return value from function, a math expression, etc



Plus Plus

X++ yields x and increments x sometime before or at the
completion of the statement it is within.

++X yields (x+1) and increments x sometime before or at
the completion of the statement it is within.



Activity

int x = 1;
%“: Y - 2; What is valid and
int ri = >

; : S
int r2 = 0: what is not valid-
rl = X++;

r2 = (X++)++;

X+Yy =X+Y;

¥(&x) = (++y) + (rl++);
¥(&x) = (++y) + (Xx++);
*(& + y) = 10;

X++ = y++;



