CSc 352
C - char arrays and reading input,
make

Benjamin Dicken

Strings?

e The concept of a “String” as a type does not exist in the base C
language. A “String” in C is an array of type char

e Terminated by a NULL (specified as '\0"')

e The functionality of strings such as concatenation, copying, etc
happens through standard library functions <string.h>

e C arrays (and therefore C strings) do NOT have automatic bound
checking for indexes

(I’ll cover arrays later - for now just focus on “strings”)

Define a new char|]

char x[] = "abcdefg";
char x[8] = "abcdefg";
Char‘ X[8] —_ {Ial, Ibl, Icl, Idl, Iel, I_Fl, Igl};

Print a char|[] Note the %s for “string” and
the %c for character

printf("%s\n", x);

for (int 1 = 9; i < sizeof{x); i++) {
printf("%c", x[i]);

}

printf("“\n");

Read a string from standard input:

char x[32]; = Why is the char[] length 32?

" o and what is the %31s for?
scanf("%31s", x); — °

printf("%s", x);

How to compare strings:

2??

Activity
Compare two strings

Write a C program that:

e Asks the user to enter two words
e Determines which would come first in a dictionary

Characters

e \What exactly *is* a char(acter) array?
e A character is (generally) a byte, or 8 bits, of general information
e (Can be interpreted as a *number* or a *character® (ASCII)

Characters

e \What exactly *is* a char(acter) array?
e A character is (generally) a byte, or 8 bits, of general information
e (Can be interpreted as a *number* or a *character® (ASCII)

$ man ascii

01011010 == 90
and
01011010 == "2’

Activity

What will it print?
#include <stdio.h>

int main() {
char x[] = "Thessalonica";
int y = x[2] + x[4];
int z = x[5] + x[1];
if (y > z) { printf("GREATER\n"); }
else { printf("LESS\n"); }
return 0;

Read strings from standard input repeatedly

#include <stdio.h> After a few runs, CTRL-D to
. N send EOF
#include <stdlib.h>

int main() {

char buffer[32]; What is this code

while(scanf("%s", buffer) != EOF) { going to do?
int i = 0;
while (buffer[i] != '\0') { i1 += 1; }
printf("INPUT length %d WAS: %s\n", i, buffer);

}

return 0;

}

Alternative options for reading

#include <stdio.h> Notice the 31
#include <stdlib.h>

int main() {
char buffer[32];
while(scanf("%31s", buffer) != EOF) {
int i = 0;

while (buffer[i] != "\@") { i += 1; }
printf("INPUT length %d WAS: %s\n", i, buffer);

}

return 0;

}

Alternative options for reading

char buffer[32];

while(fgets(buffer, 31, stdin) != NULL) {
printf("%s", buffer);

}

EOF represents End Of File
CTRL-D sends EOF
CTRL-C Kills process

#include <stdio.h>
#include <stdlib.h>
int main() {
char buffer[32];
while(scanf("%31s", buffer) != EOF) {
int i = 0;

Keyboard -
CTRL-D

while (buffer[i] != "\0@') { i += 1; }
printf("INPUT length %d WAS: %s\n", i, buffer);
}
return 0;
}
———————— b]
Compile |
|

a.out

Piping / redirecting,
system will send EOF
when file is done

///////"executable

Standard out

Standard err

Characters and char* literals

e Scanf returns -1 as EOF
e (Can return other non-zero codes though too!
e How to tell if an error, or EOF?

Characters and char* literals

e (C differentiates between a character and a string (char array) literal
e Single-quotes are used for chars
e Double-quotes for literals

Activity
Which of these are valid?

char words[] = "one small token";
char more_words[] = 'the large hill over there’;
char letter_1 = "a";

char letter_2 = 'b’;

Activity
Counting Cases

Write a C program that:

Continuously reads in standard input until end / EOF
Keeps a count of digits, lower-case, and upper-case letters
Reports the total count

(Ignore special symbols, spaces, etc)

For reference
char buffer[32]; 44———””’—————_———

while(fgets(buffer, 31, stdin) != NULL) {
printf("%s", buffer);

}

Test your program thoroughly

Ensure your output matches exactly what spec says
Test with MORE test cases that what the spec says
Handle edge cases (if applicable)

Use sbt.py

Basic Make

Make is a unix tool (available on lectura) that can be used to manage the
compiling / building of programs

For Now, very basic overview of how it works, just so that you can use it
to save you a bit of time :)

Makefile

test: test.c

gcc -Wall -Werror -std=cll test.c -o test
clean:

rm -f test

M a keﬂ Ie Target name - can use

name of result file
Prerequisite(s)

<
test: test.c

gcc -Wall -Werror -std=cll test.c -o test

clean:
rm -f test Co_mmand(s) to run to
build target, must use

tab at beginning

Another target for
A rule cleaning up the file
this can generate

Running Make

$ 1s

makefile test.c

$ make

gcc -Wall -Werror -std=cll test.c -o test
$ 1s

makefile test test.c
$ make clean
rm -f test

$

