
CSc 352
C - char arrays and reading input,
make
Benjamin Dicken

Strings?

● The concept of a “String” as a type does not exist in the base C
language. A “String” in C is an array of type char

● Terminated by a NULL (specified as '\0')
● The functionality of strings such as concatenation, copying, etc

happens through standard library functions <string.h>
● C arrays (and therefore C strings) do NOT have automatic bound

checking for indexes

(I’ll cover arrays later - for now just focus on “strings”)

Define a new char[]

char x[] = "abcdefg";
char x[8] = "abcdefg";
char x[8] = {'a', 'b', 'c', 'd', 'e', 'f', 'g'};

Print a char[]

printf("%s\n", x);
for (int i = 0; i < sizeof(x); i++) {
 printf("%c", x[i]);
}
printf("\n");

Note the %s for “string” and
the %c for character

Read a string from standard input:

char x[32];
scanf("%31s", x);
printf("%s", x);

How to compare strings:

???

Why is the char[] length 32?
and what is the %31s for?

Activity

Compare two strings

Write a C program that:

● Asks the user to enter two words
● Determines which would come first in a dictionary

Characters

● What exactly *is* a char(acter) array?
● A character is (generally) a byte, or 8 bits, of general information
● Can be interpreted as a *number* or a *character* (ASCII)

Characters

● What exactly *is* a char(acter) array?
● A character is (generally) a byte, or 8 bits, of general information
● Can be interpreted as a *number* or a *character* (ASCII)

$ man ascii

01011010 == 90
and

01011010 == 'Z'

Activity

What will it print?

#include <stdio.h>

int main() {

 char x[] = "Thessalonica";

 int y = x[2] + x[4];

 int z = x[5] + x[1];

 if (y > z) { printf("GREATER\n"); }

 else { printf("LESS\n"); }

 return 0;

}

Read strings from standard input repeatedly

#include <stdio.h>
#include <stdlib.h>

int main() {
 char buffer[32];
 while(scanf("%s", buffer) != EOF) {
 int i = 0;
 while (buffer[i] != '\0') { i += 1; }
 printf("INPUT length %d WAS: %s\n", i, buffer);
 }
 return 0;
}

After a few runs, CTRL-D to
send EOF

What is this code
going to do?

Alternative options for reading

#include <stdio.h>
#include <stdlib.h>

int main() {
 char buffer[32];
 while(scanf("%31s", buffer) != EOF) {
 int i = 0;
 while (buffer[i] != '\0') { i += 1; }
 printf("INPUT length %d WAS: %s\n", i, buffer);
 }
 return 0;
}

Notice the 31

Alternative options for reading

char buffer[32];

while(fgets(buffer, 31, stdin) != NULL) {

 printf("%s", buffer);

}

EOF represents End Of File
CTRL-D sends EOF
CTRL-C kills process

#include <stdio.h>
#include <stdlib.h>
int main() {
 char buffer[32];
 while(scanf("%31s", buffer) != EOF) {
 int i = 0;
 while (buffer[i] != '\0') { i += 1; }
 printf("INPUT length %d WAS: %s\n", i, buffer);
 }
 return 0;
}

a.out
executable

Keyboard -
CTRL-D

Piping / redirecting,
system will send EOF
when file is done

Standard out

Standard err

Compile

Characters and char* literals

● Scanf returns -1 as EOF
● Can return other non-zero codes though too!
● How to tell if an error, or EOF?

Characters and char* literals

● C differentiates between a character and a string (char array) literal
● Single-quotes are used for chars
● Double-quotes for literals

Activity

Which of these are valid?

char words[] = "one small token";
char more_words[] = 'the large hill over there';
char letter_1 = "a";
char letter_2 = 'b';

Activity

Counting Cases

Write a C program that:

● Continuously reads in standard input until end / EOF
● Keeps a count of digits, lower-case, and upper-case letters
● Reports the total count
● (Ignore special symbols, spaces, etc)

char buffer[32];
while(fgets(buffer, 31, stdin) != NULL) {
 printf("%s", buffer);
}

For reference

Test your program thoroughly

● Ensure your output matches exactly what spec says
● Test with MORE test cases that what the spec says
● Handle edge cases (if applicable)
● Use sbt.py

Basic Make

Make is a unix tool (available on lectura) that can be used to manage the
compiling / building of programs

For Now, very basic overview of how it works, just so that you can use it
to save you a bit of time :)

Makefile

test: test.c

gcc -Wall -Werror -std=c11 test.c -o test

clean:

rm -f test

Makefile

test: test.c

gcc -Wall -Werror -std=c11 test.c -o test

clean:

rm -f test

Target name - can use
name of result file

Command(s) to run to
build target, must use
tab at beginning

Another target for
cleaning up the file
this can generate

Prerequisite(s)

A rule

Running Make

$ ls

makefile test.c

$ make

gcc -Wall -Werror -std=c11 test.c -o test

$ ls

makefile test test.c

$ make clean

rm -f test

$

