
CSc 352
Text Processing and Regex

Benjamin Dicken

Processing Text

● By “processing text” (in UNIX) we mean any commands that can
search, arrange, and modify text files or text streams.

● Many commands on a UNIX system can be used for this

sort sed cut grep head tail sed tr awk . . .

Processing Text

Why should we be comfortable with text-processing?
(either in UNIX, or just with programming in-general)

● Sifting through large log files from a program
● Manipulating data files, such as XML, CSV, JSON
● Searching for patterns, functions, keywords in large codebases

(without an IDE)
● Web scraping
● Data cleansing

Three tools in UNIX

grep - A “simple” tool for searching for patterns
within a file / stream and printing out the matches

sed - A tool that can manipulate the content of files
by searching for patterns, replacing text. (more
“advanced” than grep)

awk - A programming language that can be used for
text searching / processing / manipulation

More
simplistic

More
advanced

Regular Expressions

● These three tools use regular expressions
● A regular expression is a description of a pattern of text, specified

with text
● Regular expressions are not only useful for these unix tools, but in

other contexts too (web dev, functionality in other languages)

Go through this tutorial! → https://regexone.com/

Reference → https://www3.ntu.edu.sg/home/ehchua/programming/howto/Regexe.html

https://regexone.com/
https://www3.ntu.edu.sg/home/ehchua/programming/howto/Regexe.html

Regular Expressions

● Not every tool supports the exact same set of regex features
● BRE and ERE

https://www.gnu.org/software/sed/manual/html_node/BRE-vs-ERE.html

● Use the -e option for ERE
● Also PCRE, use -P (with grep)

https://www.gnu.org/software/sed/manual/html_node/BRE-vs-ERE.html

sample.txt (use for learning regex)

The quick brown fox

Jumped over the lazy dog

Sitting under the tree

By the road next to the river

the super quick red fox

leapt over the sleeeeeeeping dog

sitting beneath the treeeeeeeeee

By the path close to the river

treeeeeeeeeee houses

Find every line containing "the"

$ grep the sample.txt

$ cat sample.txt | grep the

$ grep the < sample.txt

$ sed -n /the/p sample.txt

$ awk '/the/{print $0}' sample.txt

Many ways to
accomplish the

exact same thing

Find every line containing "the"

$ grep the sample.txt

$ cat sample.txt | grep the

$ grep the < sample.txt

$ sed -n /the/p sample.txt

$ awk '/the/{print $0}' sample.txt

These are basic
regular

expressions

Can make these
more complex

Regex Special Keywords

Regex has many special keywords that represent something other than
the literal character. Some of these are:

^ $ [] . + * - \ { }

Beginning and end of line

The ^ and $ match the beginning and end of a line of input

Useful when you want search for something at the beginning of a line,
end of a line, or match an entire line

For example:
$ grep river$ sample.txt

Will search for lines that end with the word “mountains”

Activity

Write a bash command to print lines from
sample.txt that begin with “the”

Write a grep command to take the output
of ls -l and show only the directories

Search The File

Match exactly one character

The dot (.) matches any character at that position

Does this seem familiar?

For example:
$ grep p..h sample.txt

Will search for lines that contain a “p” followed by any two
characters, and end in an “h”

Previous Character

+ matches one or more of the character that comes before it

* matches zero or more of the character that comes before it

? matches zero or one of the character that comes before it

For example:
$ grep -P sle+p sample.txt

Will search for lines that contain “screch”, “screech”, “screeech”, etc

Activity

Write a bash command to print lines from
sample.txt that begin with “the” and end
with “fox” and can have any amount of

text in-between

Search The File

Groups and Ranges

Use [] to specify a group of characters to match

Use - to specify a range within a group

For example:

$ grep r[aeiou][aeiou]ch sample.txt

$ grep r[a-z]d sample.txt

Activity

Determine at least one string that each grep command will match

$ cat input.txt | grep [T-X][a-z][a-p]

$ cat input.txt | grep z[eio]+[aeiou]*

$ cat input.txt | grep ..[0971]..

What will it match?

Special Categories of Characters

\d match any digit

\D match any non-digit

\w match any alphanumeric

\W match any non-alphanumeric (with -P)

\s match any whitespace

\S match any non-whitespace

. match any character

Escaping

As with string literals in code, use backslash to escape special characters

For example, if you want to actually search for a period, brackets, etc.

Grep: A Few Flags

-E Use extended regex (or use egrep instead)

-o Print only the matching part of a line

-R Recursive-search through directories and subdirectories

-v Print non-matching lines

-P Use PCRE

sed (Stream EDitor)

$ sed -a -E '/the/p' file_name.txt

sed command

options
The sed

command
(address)

File name
(don’t include if

reading from
standard input)

sed Commands (Addresses)

'/the/p'

's/night/day/p'

's/\s[a-z][a-z]\s/ ZZ /g'

Print lines
matching 'the'

Substitute
occurrences of

'night' with 'day'

Substitute two-letter
words surrounded
by whitespace with

' ZZ '
See: $ man sed

Further Reading

https://www.digitalocean.com/community/tutorials/the-basics-of-using-the-sed-stream-editor-to-manipulate-text-in-linux

https://www.digitalocean.com/community/tutorials/using-grep-regular-expressions-to-search-for-text-patterns-in-linux

https://www.digitalocean.com/community/tutorials/the-basics-of-using-the-sed-stream-editor-to-manipulate-text-in-linux
https://www.digitalocean.com/community/tutorials/using-grep-regular-expressions-to-search-for-text-patterns-in-linux

