
CSc 352

Valgrind
Benjamin Dicken

Valgrind

● A tool for debugging executables
● Provides a virtual CPU to run various “tools” for profiling your code
● Can use to

○ Detect memory leaks
○ Profile heap usage
○ Profile performance
○ Etc.

Check out the man page

Valgrind

● Use the --tool command-line option to specify what valgrind tool
you want to use

● For this class, primarily use --tool=memcheck (the default)
○ You are welcome to experiment with others!

#define LARGE 250

char* get_longest_line() {
 char* longest = NULL;
 char* line_buffer = malloc(LARGE);
 while(fgets(line_buffer, LARGE, stdin) != NULL) {
 int length = strlen(line_buffer);
 if (longest == NULL || length > strlen(longest)) {
 longest = malloc(length+1);
 longest[length] = '\0';
 strncpy(longest, line_buffer, length);
 }
 }
 return longest;
}

int main() {
 char* longest_line = get_longest_line();
 printf("The longest line from standard input is:\n");
 printf("%s\n", longest_line);
 free(longest_line);
 return 0;
}

Input:

abcdefghijk
abcdefghijklmnop
abcdefghijklmnopqrs
abcdefghijklmnopqrstuv

Try out Valgrind
with this
program from
before

$ gcc -Wall -Werror -std=c11 test.c -o longestline

$ valgrind --tool=memcheck ./longestline

==494374== Memcheck, a memory error detector

==494374== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==494374== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info

==494374== Command: ./longestline

==494374==

Waiting for us to
give it standard
input

$ gcc -Wall -Werror -std=c11 test.c -o longestline

$ valgrind --tool=memcheck ./longestline

==494374== Memcheck, a memory error detector

==494374== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==494374== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info

==494374== Command: ./longestline

==494374==

abcdefghijk
abcdefghijklmnop
abcdefghijklmnopqrs
abcdefghijklmnopqrstuv

Ctrl-D to send
EOF signal to
program

. . . .

==494374==

==494374== HEAP SUMMARY:

==494374== in use at exit: 302 bytes in 4 blocks

==494374== total heap usage: 7 allocs, 3 frees, 2,374 bytes allocated

==494374==

==494374== LEAK SUMMARY:

==494374== definitely lost: 302 bytes in 4 blocks

==494374== indirectly lost: 0 bytes in 0 blocks

==494374== possibly lost: 0 bytes in 0 blocks

==494374== still reachable: 0 bytes in 0 blocks

==494374== suppressed: 0 bytes in 0 blocks

==494374== Rerun with --leak-check=full to see details of leaked memory

==494374==

==494374== For lists of detected and suppressed errors, rerun with: -s

==494374== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Heap memory in
use at program
exit

Definitely lost this
memory

Maybe get
more info?

$ gcc -Wall -Werror -std=c11 test.c -o longestline

$ valgrind --tool=memcheck --leak-check=full ./longestline

. . . .

==495187==

==495187== HEAP SUMMARY:

==495187== in use at exit: 302 bytes in 4 blocks

==495187== total heap usage: 7 allocs, 3 frees, 2,374 bytes allocated

==495187==

==495187== 52 bytes in 3 blocks are definitely lost in loss record 1 of 2

==495187== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)

==495187== by 0x10924A: get_longest_line (in /home/bddicken/test/longestline)

==495187== by 0x1092B9: main (in /home/bddicken/test/longestline)

==495187==

==495187== 250 bytes in 1 blocks are definitely lost in loss record 2 of 2

==495187== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)

==495187== by 0x109207: get_longest_line (in /home/bddicken/test/longestline)

==495187== by 0x1092B9: main (in /home/bddicken/test/longestline)

==495187==

. . . .

Specific info on
where the
memory was lost

But we can do better with -g

$ gcc -Wall -Werror -std=c11 test.c -g -o longestline

$ valgrind --tool=memcheck --leak-check=full ./longestline

. . . .

==495350== HEAP SUMMARY:

==495350== in use at exit: 302 bytes in 4 blocks

==495350== total heap usage: 7 allocs, 3 frees, 2,374 bytes allocated

==495350==

==495350== 52 bytes in 3 blocks are definitely lost in loss record 1 of 2

==495350== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)

==495350== by 0x10924A: get_longest_line (test.c:14)

==495350== by 0x1092B9: main (test.c:23)

==495350==

==495350== 250 bytes in 1 blocks are definitely lost in loss record 2 of 2

==495350== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)

==495350== by 0x109207: get_longest_line (test.c:10)

==495350== by 0x1092B9: main (test.c:23)

. . . .

File names and
line numbers

$ gcc -Wall -Werror -std=c11 test.c -g -o longestline

$ valgrind --tool=memcheck ./longestline

. . . .

==497142==

==497142== HEAP SUMMARY:

==497142== in use at exit: 0 bytes in 0 blocks

==497142== total heap usage: 7 allocs, 7 frees, 2,374 bytes allocated

==497142==

==497142== All heap blocks were freed -- no leaks are possible

==497142==

==497142== For lists of detected and suppressed errors, rerun with: -s

==497142== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

. . . .

After fixing the
leaks

int main() {
 int sum;
 int i;
 while (i > 0) {
 sum += rand();
 i--;
 }
 printf("%d\n", sum);
 return 0;
}

Valgrind can also
detect other
memory-related issues

$ valgrind --tool=memcheck --leak-check=full ./a.out

==499172== Memcheck, a memory error detector

==499172== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==499172== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info

==499172== Command: ./a.out

==499172==

==499172== Conditional jump or move depends on uninitialised value(s)

==499172== at 0x109187: main (test2.c:7)

==499172==

==499172== Conditional jump or move depends on uninitialised value(s)

==499172== at 0x48DD958: __vfprintf_internal (vfprintf-internal.c:1687)

==499172== by 0x48C7D3E: printf (printf.c:33)

==499172== by 0x10919E: main (test2.c:11)

==499172==

==499172== Use of uninitialised value of size 8

==499172== at 0x48C169B: _itoa_word (_itoa.c:179)

==499172== by 0x48DD574: __vfprintf_internal (vfprintf-internal.c:1687)

==499172== by 0x48C7D3E: printf (printf.c:33)

==499172== by 0x10919E: main (test2.c:11)

. . . .

Activity

What is wrong? What does valgrind say?

#include <stdlib.h>

int main() {

 int x = -1;

 char * data = malloc(x);

 free(data);

 return 0;

}

==506388==

==506388== Argument 'size' of function malloc has a fishy (possibly negative) value: -1

==506388== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)

==506388== by 0x109188: main (test2.c:4)

==506388==

https://valgrind.org/docs/manual/mc-manual.html

https://valgrind.org/docs/manual/mc-manual.html

