
CSc 352
C - Syntax, Numbers, Math, I/O

Benjamin Dicken
Inspired by Slides from Eric Anson

C Language

● Expectation: You already know Python and Java
● C syntax similar to Java, less so Python

○ Variables assignment, ifs, loops, curly-braces, etc

Differences between C and Java

● NOT object oriented (no classes, inheritance, methods, etc)
● Low-level (not run with interpreter / VM)
● Memory Management, Garbage Collection
● Pointers (similar to references)
● Less stuff is built-in, have to #include functionality
● No array boundary protection
● Less hand-holding :)

code.py
Python Interpreter

Runs code
“on-demand”

Operating System /
Hardware

Running Python

Code.java
(source)

Java Virtual Machine
(JVM)

(Virtual Machine)

Operating System /
Hardware

Running Java

Javac
(java compiler)

Code.class
(Java bytecode)

Code.java
(source)

Java Virtual Machine
(JVM)

(Virtual Machine)

Operating System /
Hardware

Running Java

Javac
(java compiler)

Code.class
(Java bytecode)

The “compile”
button

The “run”
button

Operating System /
Hardware

code.c
(source)

Running C

gcc
(C compiler)

a.out
(executable)

code.c
(source)

Operating System /
Hardware

Running C

gcc
(C compiler)

a.out
(executable)

Compiled and then run,
cuts out VM middle-man

PRO: faster, more control
CON: less portable

code.c
(source)

Operating System /
Hardware

Running C

gcc
(C compiler)

a.out
(executable)

Human readable
Text file

Machine code
Not (easily) human readable
Binary file

C Compilers

● A program that takes C source code (text) as input, and produces an
executable file (binary) that can run directly on an operating system,
as output

● Two popular: gcc and clang
● For this course: gcc

$ man gcc # so many options, what should we use?

gcc Options

-Wall

C compilers differentiate warnings from errors by default
Warnings can be turned on / off
This option enables all warnings

-Werror

Treat all warnings as errors
Won’t compile unless there are *no* warnings / errors)

-std=c11

Multiple C standard / versions
For this class: C11 (as opposed to C89, C99, C17)

Compiling with gcc

$ ls

some_code.c

$ gcc -Wall -Werror -std=c11 some_code.c

$ ls

a.out some_code.c

$

Compiling with gcc

$ ls

some_code.c

$ gcc -Wall -Werror -std=c11 some_code.c

$ ls

a.out some_code.c

$

So what goes in a .c file?

Activity

Compile and run a C Program

● Log on to lectura (or local)
● Create file named some_code.c
● Put this in it, then run:

$ gcc some_code.c

$./a.out

int main() {

 printf("hi\n");

}

Activity

Compile and run a C Program

Now try:
$ rm a.out

$ gcc -Wall -Werror -std=c11 some_code.c

$./a.out

Also try with c89

int main() {

 printf("hi\n");

}

Compiling with gcc

#include <stdio.h>

int main() {

 printf("hi\n");

 return 0;

}

Compiling with gcc

#include <stdio.h>

int main() {

 printf("hi\n");

 return 0;

}

return type, function name, param
sequence (like Java)

Curly-braces for functions
Also used for ifs, loops, scope
(like Java)

Function calls, arguments,
params, etc works similar to Java
(more on that in future)

#include <stdio.h>

int age = 45;
int height = 104;

int main() {
 int weight = 180;

 printf("age: %d\n", age);
 printf("height: %d, weight: %d\n", height, weight);

 return 0;
}

#include <stdio.h>

int age = 45;
int height = 104;

int main() {
 int weight = 180;

 printf("age: %d\n", age);
 printf("height: %d, weight: %d\n", height, weight);

 return 0;
}

Global variables of type int
C uses static types, like Java

Local integer variable

Print formatting
See: man 3 printf

printf format strings

The first argument is a string that can contain regular characters, escape
characters (starting with \) and conversion specifiers (starting with %)

printf("word %d another %f another, %x \n", a, b, c);

Number of conversion specifiers must match values following

Each conversion specifier can have multiple options
D for dec int, x for hex int, f for float number, etc

See man page

Style requirements

Style Guide - https://benjdd.com/courses/cs352/fall-2022/style/

https://benjdd.com/courses/cs352/fall-2022/style/

Man pages

Different types of man pages:

1. User commands
2. System Calls (OS / kernel functions)
3. Library calls (program libraries)
4. Special files (usually from /dev)
5. File formats and conventions
6. Games
7. Miscellaneous
8. System admin commands
9. Nonstandard Kernel Routines

When we see something like CAT(1) this tells us it is from category 1

#include <stdio.h>

int main() {

 int height = 0;

 int weight = 0;

 printf("Enter height: ");

 scanf("%d", &height);

 printf("Enter weight: ");

 scanf("%d", &weight);

 printf("\nYour height and weight is: ");

 printf(" height: %d, weight: %d\n", height, weight);

 return 0;

}

#include <stdio.h>

int main() {

 int height = 0;

 int weight = 0;

 printf("Enter height: ");

 scanf("%d", &height);

 printf("Enter weight: ");

 scanf("%d", &weight);

 printf("\nYour height and weight is: ");

 printf(" height: %d, weight: %d\n", height, weight);

 return 0;

}

The scanf function comes from
the stdio component of the C
standard library as well

Call scanf, specify expected type
in the format string

Print the results

Why the "&" ?
For now, just know that you need to
put it there, will address further later

Activity

Averaging Numbers

Write a C program that:

● Asks the user for three integer numbers
● Computes the average
● Prints the result

Math in C

Most of the standard / simple math operators work as-expected

+ - / * % ++ --

Some of the more “advanced” operations in the <math.h> module

.... exp(base, exponent) sqrt(number) fabs(a, b)

Look at some man pages
(What are these “floats” and “doubles”?) (-lm)

Primitive Types in C

char short int long long long float double long double

● Integers can be preceded by signed or unsigned (signed default)
● Why so many types? Sizes.

○ Some use different amount of bytes
■ Less bytes = less memory, but less range

● Keep in mind: behind the scenes, *all* of these types are just binary
sequences of 1s and 0s

Integer representation
Floating-point representation

Primitive Types in C

char min = 8 bits -128 to 127
short min = 16 bits -32,768 to 32,767
int min = 16 bits -32,768 to 32,767
long min = 32 bits -2,147,483,647 to 2,147,483,647
Long long min = 64 bits -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

float typically 32 bits
double typically 64 bits
long double typically 128 bits

● Specifics varies from machine to machine
● Use sizeof() and limits.h

Integer representation
Floating-point representation

#include <stdio.h>

int main() {

 int a = 100;

 long long b = 10000;

 float c = 1.76891401;

 double d = 12875.1002713;

 printf("Int: %d\n", a);

 printf("Long long: %lld\n", b);

 printf("Float: %f\n", c);

 printf("Double: %lf\n", d);

 printf("Double with four dec: %.4f\n", d);

 return 0;

}

Activity

What will it print?#include <stdio.h>

int main() {

 signed char x = 0;

 printf("%ld\n", sizeof(x)); // prints out 1 (1 bytes = 8 bits)

 printf("%d\n", x);

 long i = 0;

 while (i < 257) {

 x = x + 1;

 i += 1;

 }

 printf("%d\n", x);

 return 0;

}

#include <stdlib.h>

#include <stdio.h>

void bin(char n) {

 unsigned int i;

 for (i = 1 << 7; i > 0; i = i / 2) {

 (n & i) ? printf("1") : printf("0");

 }

 printf("\n");

}

int main() {

 char x = 127;

 for (int i = 0; i < 3; i+= 1) {

 printf("%d\n", x);

 bin(x);

 x += 1;

 }

 return 0;

}

Activity

What will be in output.txt?

#include <stdio.h>

int main() {

 int x1 = 0, x2 = 0;

 scanf("%d", &x1);

 scanf("%d", &x2);

 printf("result: %d\n", (x1 + x2));

 return 0;

}

add.c

20
30

input.txt
$ gcc -Wall -Werror -std=c11 -o add add.c
$ echo "addition is: " >> output.txt
$ cat input.txt | ./add > output.txt

