
Web Application Vulnerabilities

Benjamin Dicken

Announcements

● Code on class schedule
● Complete the SCS

○ Drop one PA if completion reaches 70%+
● If you have not already, get started on those final projects

XSS = Cross Site Scripting

● The process of injecting malicious javascript code into a website
● Can be used by malicious users to gain access to information

Example: xss.zip (class website)

Database Injection

● When data from a client form / input is “injected” is sent to a server
and “injected” into a database query

● Risk of giving a user information that he should not have
● Risk of giving user ability to delete data that he shouldn’t be able to

Example: resp-injection.zip (class website)

Database Injection

Benign
Client Server MongoDB

POST /login HTTP/1.1
host: benjdd.com
. . . .
{user:"sally", pass="abcd"}

HTTP/1.1 200 OK
Content-Length: ?
. . . .
{status: "SUCCESS", info: [
 {user:"sally", pass="abcd"}
]}

Database Injection

Malicious
Client Server MongoDB

POST /login HTTP/1.1
host: benjdd.com
. . . .
{user:"SOMETHING_MALICIOUS", pass="abcd"}

HTTP/1.1 200 OK
Content-Length: ?
. . . .
{status: "SUCCESS", info: [
 {user:"sally", pass="abcd"},
 {user:"joe", pass="pass"},
 {user:"ian", pass="tiger"},

 {user:"janet", pass="pwdz"}
]}

Announcements

● Complete the SCS
○ Drop one PA if completion reaches 70%+

● Documents
● Progress meetings next week

Activity

Expose Vulnerabilities

● Try using XSS and Database Injection to expose security flaws with
the system

● DO NOT: Do anything truly malicious that would steal other’s
information (you can do “fake” malicious things)

● BE CAREFUL: While working on this activity

http://159.223.161.158

http://159.223.161.158

Denial of Service

● Overwhelm a web server, API, etc with high volume of requests
● Externally force service degradation

Denial of Service

Server

Benign
Client

Malicious
Client

Malicious
Client

Malicious
Client

No or slow reply due to server
being overwhelmed with requests

const https = require('https');

function makeRequest() {

 https.get('ADDRESS', (resp) => {

 let data = '';

 resp.on('data', (chunk) => {

 data += chunk;

 });

 resp.on('end', () => {

 //console.log(data);

 console.log('request made')

 });

 }).on("error", (err) => {

 console.log("Error: " + err.message);

 });

}

setInterval(makeRequest, TIME);

http://159.223.161.158

http://159.223.161.158

Activity

Improvements for “Responsibilities”

● Keep user logged in while there is activity
● Cross-out completed tasks
● Delete tasks
● Separate session logic into module
● Sort lists alphabetically, or by priority
● Users should have their own lists
● Collaboration on a list

Lets try this!

Packet Sniffing (MITM)

● Look at network traffic that was not intended for you
● If unencrypted, could discover sensitive information!
● (One reason why HTTPS is so important)

