CS 337 Databases and DBMSs

Benjamin Dicken

Announcements

- Welcome Back
- PA 8
- Final Project
- UG Teaching Assistant Applications

Database != DBMS

- A Database (DB) is an organized collection of data, typically organized to model aspects of reality in a way that supports external processing
- A Database Management System (DBMS) is a computer software application that interacts with the user, other applications, and the database itself to capture and analyze data

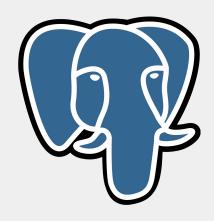
- A database is not a program
- It is a collection of information (typically one or more files on a computer) that represent something meaningful
- We will discuss several ways in which databases can model reality

- A database could be:
 - A single CSV file, where each line represents an entity, and each column a bit of information
 - A collection of files in a directory that have information related to each-other
 - An entire hard-drive with organized files and information
 - An building full of hard drives with petabytes of information

- A DBMS is a computer program
- A user should interact with the DBMS, not the database
 - A DBMS is a "middle man" between the user and the database
 - A robust DBMS provides features to add, remove, retrieve, and process data in a database
 - Users sends *queries* to a DBMS to interact with the data held within it

Activity

Databases and DBMSs


 Why is a DBMS necessary? Why Can't we just manually view and edit files using programs like Excel?

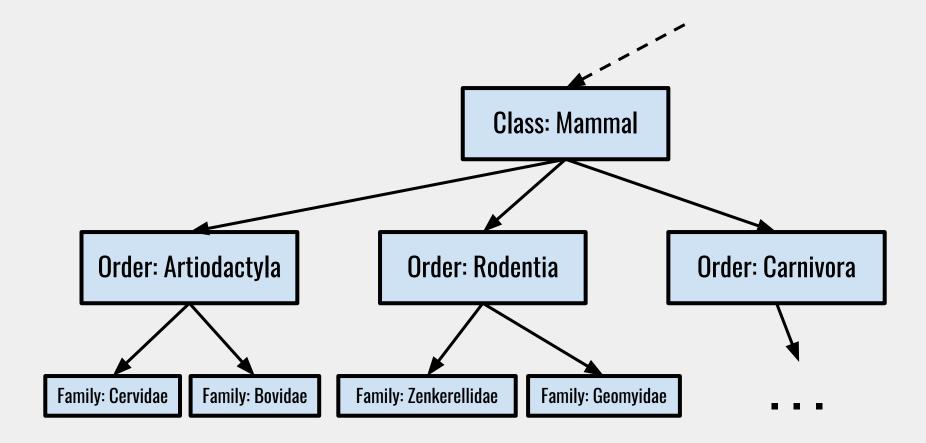
- Why is a DBMS necessary? Why Can't we just manually view and edit files using programs like Excel?
 - Scale is one issue
 - What if you have a billion pieces of information?
 - Complexity is another issue
 - What if you have very complex information and relationships to represent?

- Well-known DBMSs include
 - MySQL, SQLite, PostgreSQL, MongoDB, MariaDB,
 Microsoft SQL Server, Oracle, IBM DB2 ...

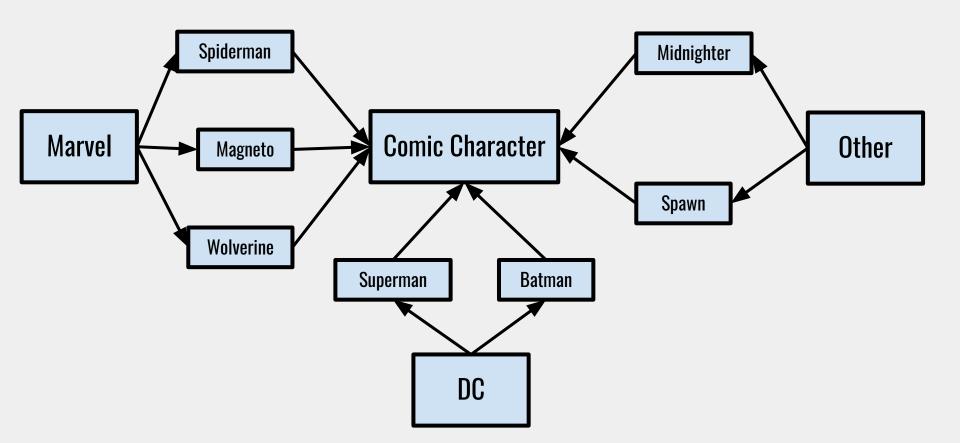
- A DBMS should provide functionality that allows for management of a database and its data
- These functionalities can be classified into four main functional groups

- 1) Data definition
- 2) Update
- 3) Retrieval
- 4) Administration

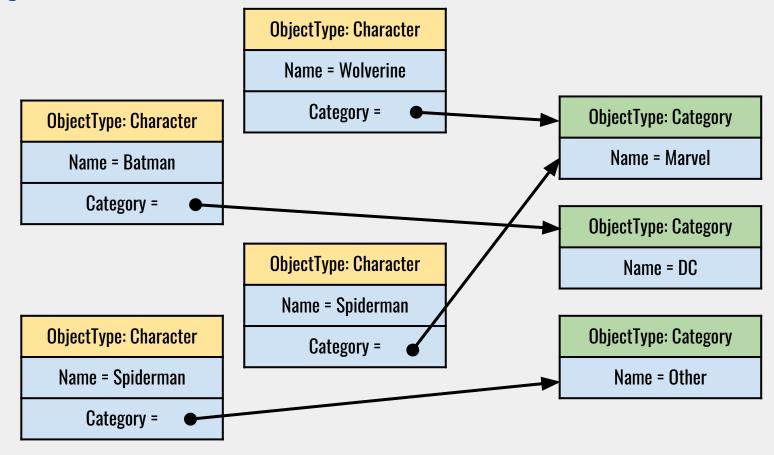
Activity


- 1) Data definition
- 2) Update
- 3) **Retrieval**
- 4) Administration

What do each of these DBMs requirements refer to? Write a sentence for each.


- Data definition Creation, modification and removal of definitions that define the organization of the data
- 2) **Update** Insertion, modification, and deletion of the actual data
- 3) **Retrieval** Providing information in a form directly usable or for further processing by other applications.
- Administration Registering and monitoring users, enforcing data security, monitoring performance, recovery, etc...

- Four main structure types of databases
 - Relational databases
 - Hierarchical databases
 - Network databases
 - Object-oriented databases


Hierarchical Model (Taxonomic Rank)

Network Model

Object-oriented Model

Relational Model

Name Batman Superman Spiderman Spawn Midnighter Magneto Wolverine

Name

Marvel

DC

Other

Relational Model

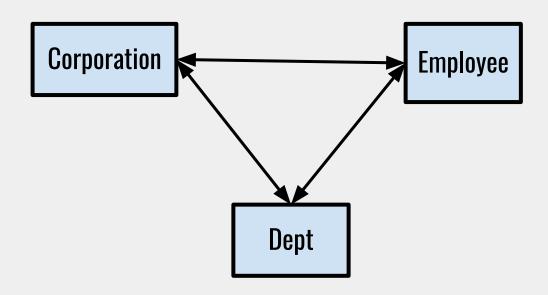
Name	Character ID	CatID
Batman	1	2
Superman	2	2
Spiderman	3	1
Spawn	4	3
Midnighter	5	3
Magneto	6	1
Wolverine	7	1

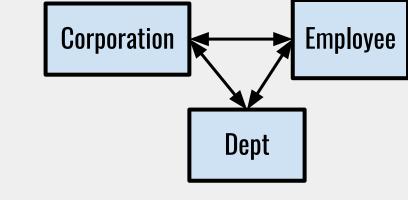
Name	Name CatID	
Marvel	1	
DC	2	
Other	3	

Relational Model

Name	Character ID	CatID			
Batman	1	2		Name	CatID
Superman	2	2		Marvel	1
Spiderman	3	1		DC	2
Spawn	4	3	***	Other	3
Midnighter	5	3			
Magneto	6	1			
Wolverine	7	1			

- Four main structure types of DBMSs
 - Relational databases
 - Hierarchical databases
 - Network databases
 - Object-oriented databases

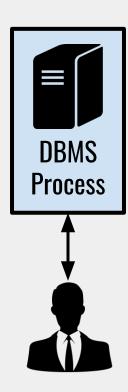

Object - oriented model

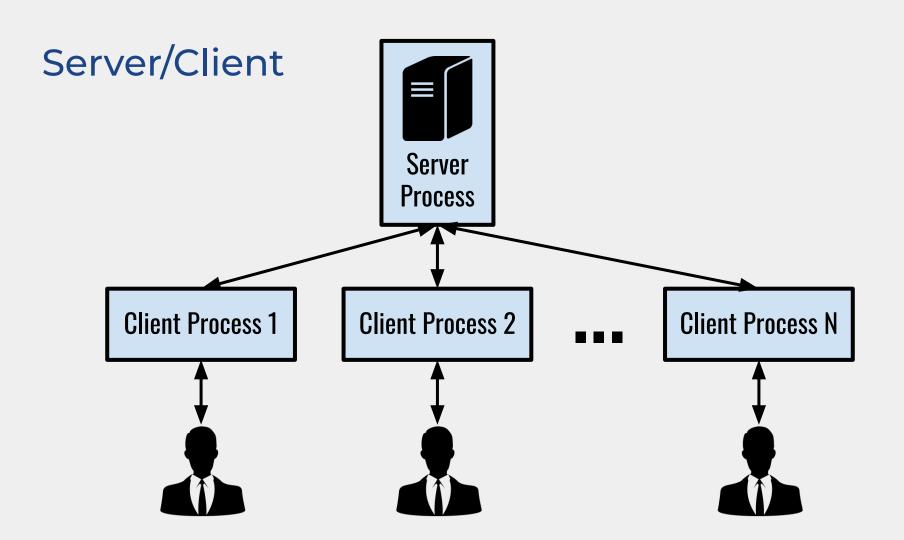

- It is the task of a database administrator, or backend dev, to model some real-world information and interactions with the relational model
- Typically, each real-world entity has its own document

How to model the following real-world information with a relational model?

John Smith makes \$80,000 /yr in the Engineering dept for IBM
Janet Carrie makes \$120,000 /yr in the Marketing dept for IBM
Michael Johnson makes \$150,000 /yr in the Marketing dept for Raytheon
Samantha Jones makes \$100,000 /yr in the Finance dept for Raytheon
Luigi deSantis makes \$85,000 /yr in the Finance dept for IBM
Yuri Bezmenov makes \$115,000 /yr in the Research dept for Raytheon
Jocob Robinson makes \$70,000 /yr in the Engineering dept for IBM

- In this set of info, there are three types of entities
 - Employee
 - Departments
 - Corporations
- What can we use to model this?

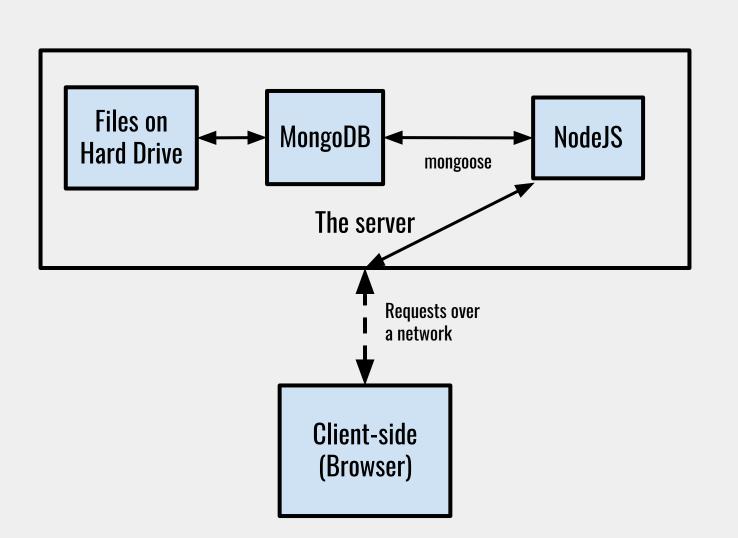



Types of Relationships

- Relationships
 - 1-to-1: Do not need extra table for relationship
 - 1-to-many: Sometimes want extra table for relationship (but not necessary)
 - If only need to go one-way, no need
 - If want to go both ways easily, then need!
 - many-to-many: Always have extra relation for relationship

- In this set of info, there are three types of entities
 - Employee
 - Departments
 - Corporations
- What can we use to model this?

Standalone



MongoDB

- In particular, we will be learning the MongoDB DBMS because:
 - Good for using with Js
 - Works well with nodeJs and express (mongoose)
 - Part of the popular MEAN stack

