
CSc 337
Dev stacks,
MERN, and React

Benjamin Dicken

Project Check-ins

Project Check-in meetings on Tuesday
Projects should be approximately 50% complete
We will ask questions about your project, perhaps things like:

● How has the project gone so far?
● How are you dividing up the work? What has each member of the

group been contributing?
● What has been the biggest challenge so far?
● What percentage of the work do you think you have completed?

Web Development Stacks

A set of tools often used together for creating web applications

Two well-known examples:

LAMP

MERN (and variants such as MEAN, MEVN)

LAMP

Linux

(or UNIX)
Operating

system family
kernel commonly
used for servers

Apache

Web server
software

MySQL

A popular
relational,

SQL-based
DBMS

PHP

A programming
language,

(previously)
frequently used

for web dev

MERN

MongoDB

A NoSQL,
document /

object based
DBMS

Express

Framework for
handling

requests to a
server, via routes

React

UI and
templating
framework

Node

A JS interpreter /
runtime, good for

developing
servers with

MEAN

MongoDB

A NoSQL,
document /

object based
DBMS

Express

Framework for
handling

requests to a
server, via routes

Angular

Framework for
creating web
applications

Node

A JS interpreter /
runtime, good for

developing
servers with

MEVN

MongoDB

A NoSQL,
document /

object based
DBMS

Express

Framework for
handling

requests to a
server, via routes

Vue

Web user
interface

framework

Node

A JS interpreter /
runtime, good for

developing
servers with

Activity

Why Web Stacks?

Why use a predetermined web development stack?

Why not just use whatever combination of tools you want?

MERN - A Useful Skill

https://www.indeed.com/jobs?q=mern+stack

https://www.indeed.com/jobs?q=mern+stack

React- What is it?

● Widely used web development framework
● Maintained by Meta
● Can be used to generate UIs for mobile devices as well

(not just for web!)
● Provides mechanisms to keep UI code organized and improve

component reusability
● Usage flexibility

https://react.dev/

https://react.dev/

React - Why use vs plain HTML+CSS+Js?

● By Design, React allows us to organize our user interface into
chunks (called Components)

● Keeps things organized, allows for re-usability
● Less copy-paste!
● Also provides Hooks for data

Instead of This<html>

<head> <!-- --> </head>

<body>

 <div class="segment" id="responsibilities">

 <h2>RESPONSIBILITIES LOGIN</h2>

 </div>

 <div>

 <div>LOG IN</div>

 <label for="usernameLogin">Username</label>

 <input id="usernameLogin" type="text"> </input>

 <label for="passwordLogin">Password</label>

 <input id="passwordLogin" type="text"> </input>

 <input type="button" onclick="login();" value="Log in"/>

 </div>

</body>

</html>

Create a React
Component

import React from 'react';

function Login() {

 const [user, updateUser] = React.useState('?');

 const [pass, updatePass] = React.useState('?');

 //

 return (

 <div className="Login">

 <h1>Responsibilities Login</h1>

 <label>Username</label>

 <input onInput={u => updateUser(u.target.value)}></input>

 <label>Password</label>

 <input onInput={p => updatePass(p.target.value)}></input>

 <button onClick={e => sendLoginRequest()}>Login</button>

 <button onClick={e => createAccount()}>Create Account with Credentials</button>

 </div>

);

}

export default Login;

Then use
like this

import './App.css';

import Login from './Components/Login'

function Landing() {

 return (

 <div className="LoginPage">

 <Login />

 </div>

);

}

React - how to integrate

1. Develop Server-side as usual (Node, Express, MongoDB)
EXCEPT: don’t handle static files, no public_html

2. Initialize new react app directory for client design
$ npx create-react-app client

$ npm install react-router-dom # will need later

3. Build your application
4. Run client and server on different ports

$ node server.js # server

$ npm start # client

client

├── README.md
├── public
│ ├── favicon.ico
│ ├── index.html
│ ├── manifest.json
│ └── robots.txt
└── src
 ├── App.css
 ├── App.js
 ├── index.css
 ├── index.js
 ├── reportWebVitals.js
 └── setupTests.js

myWebProject

├── server
│ ├── server.js
│ ├── node_modules
│ └──
└── client

Building “Responsibilities” afresh

1. Review old Responsibilities
2. Create a new, simplified version using React
3. Will require components, hooks, and navigation

Demo Time!

(Can follow along with starter code on schedule)

