
CS 337
Passwords
Benjamin Dicken



Announcements

● Group Submit
● Exam 2 next week

○ Cumulative
○ Includes all subjects from before exam 1 as well as more recent 

topics such as Node, Express, AJAX, DBMSs, MongoDB, 
Mongoose, etc.

○ 20-30 short answer questions, 3-5 longer questions.
■ The longer questions could have multiple parts

○ Topic cutoff end of this week



User Schema for Database

var UserSchema = new Schema({

  username: String,

  password: String,

  email: String,

  phone: String,

  . . . .

});

var User = mongoose.model('User', UserSchema );



What else is needed?

1. Create new accounts
2. login functionality (check if username and password 

matches one in our database)
3. remember that a user has already logged in (cookies)
4. Security (salting, hashing, etc)



Without 
Cookies

Client Server
index.html?user=lori&pass=zrtx

<html> .... </html>

shop.html?user=lori&pass=zrtx

<html> .... </html>

shoppingCart.html?user=lori&pass=zrtx

<html> .... </html>

checkout.html?user=lori&pass=zrtx

<html> .... </html>

Send along credentials 
each time new restricted 
page is loaded



With 
Cookies

Client Server
login.html?user=lori&pass=zrtx

<html> .... </html>

shop.html

<html> .... </html>

shoppingCart.html

<html> .... </html>

checkout.html

<html> .... </html>

Given sessionID upon 
login, continue to send 
back to server on 
follow-up requests to 
identify

sessId=1572

sessId=1572

sessId=1572

sessId=1572



Activity

Storing passwords

● Is storing passwords as text in a database secure?
● What if the web app was meant to handle sensitive information, such 

as medical records or financial info?
● If it were up to you, how would you change the structure of the server 

/ database to store passwords and log users in more securely?



Avoid storing plaintext password

● Rule of thumb: never store (save to hard drive) a user’s password in 
plain text on your server

● Use a hashing function to store a hash instead



Hash function

● A function that can be used to map data of arbitrary size to a value of 
fixed size

"password" → hash function → "lp31"
"Abc123z" → hash function → "z1ey"
"dfh83hqkjbsdoi234a" → hash function → "xrt7"



Cryptographic Hash function

● A hash function that has some additional properties, such as:
○ Is fast
○ Is a one-way operation
○ Similar inputs should not give similar outputs

"password" → hash function → "id6qwfi37fdiuyf"
"passw0rd" → hash function → "zq02odmnccdyg01"
"passwords" → hash function → "mncb8werh763rfs"



Salting and Hashing

● Add extra, random data to a password
● Avoids having two people with the same password produce the same 

hash

"password9384" → hash function → "cs763req65esdtr"
"password1723" → hash function → "128ydv7qt38q728"
"password2301" → hash function → "q2sqwa32eaasd2q"



Salting and Hashing

● When a user goes to create an account:

1. Username and password get sent to server
2. Generate a salt
3. Concatenate the password + salt
4. Hash the password + salt
5. Save the salt and hash in database



Salting and Hashing

● When a user goes to login:

1. Username and password get sent to server
2. Find user with matching username
3. Concatenate the password + salt
4. Hash the password + salt
5. See if the hash matches the user hash



Activity

How would you do this?

● Can you come up with an algorithm to make a 1-way hash?
● How would you go about it?


