
CSc 317
Resources and IDs

Benjamin Dicken



Announcements

● PA 1 due this evening
● PA 2
● Quiz 2



Four Main Building blocks of apps

● Activities - The entry point for interacting with the user. It represents 
a single screen with a user interface.

● Services - A general-purpose entry point for keeping an app running 
in the background for all kinds of reasons. For instance, a download 
or music.

● Broadcast Receivers - A component that enables the system to 
deliver events to the app outside of a regular user flow, allowing the 
app to respond to system-wide broadcast announcements.

● Content providers - Manages a shared set of app data.

Loosely taken from the android dev docs



Activities

● Activities are one of the building blocks of android applications
● From the reading:

The Activity class is a crucial component of an Android app, and 
the way activities are launched and put together is a fundamental part 
of the platform's application model. Unlike programming paradigms 
in which apps are launched with a main() method, the Android 
system initiates code in an Activity instance by invoking specific 
callback methods that correspond to specific stages of its lifecycle.



Activities

● For now, each main interface screen of your 
application will be built using an Activity

● A simple, one-page app might only need one 
activity

● Some apps may have many
● Each activity that has a UI should have an 

associated layout xml file



Activities

● How does one create an activity?
● How does one change from one active activity 

to another?



ICA

A new activity

● Create a new activity, and call it 
MemeActivity
○ Two new files should be created: 

MemeActivity.java and 
activity_meme.xml

● The new view should display one meme of 
your choice

● Do this in code/xml, not with the GUI 
editor



Resources

● Utilizing resources is key to creating a 
well-engineered application

● Can break up your application into two main 
categories:
○ Code: for logic
○ Resources: Use for string, images, colors, 

animations, UI, layout, etc.
■ Don’t try to do those things in code, 

unless necessary



Resources

● Have already come across some 
examples of resources:
○ Images
○ Strings
○ Colors



Alternative Resources

● Can provide alternate versions of the “same” 
resource for differences in:
○ Screen density
○ language/region
○ Layout direction
○ UI mode (car, watch, TV, etc)
○ Mode (day or night)

● Specified via qualifiers at the end of the file 
or directory



For instance, screen orientation

● Can have different 
resources files for 
landscape and portrait 
modes



ICA

Multiple resources 

● First step: search online for two images of 
roughly the same proportion

● Save to your Desktop



ICA

Multiple resources - portrait/land

● Change the app so it displays another 
image in the main activity, except:
○ The image should *change* depending 

on the screen orientation
○ No need to write *code* to do this
○ When dragging the files to the 

drawable directory, add either -port or 
-land to the end



ICA

Multiple resources - portrait/land

Take a look at the directory structure in

● Android Studio
● Finder / Windows explorer

What’s the difference?



For instance, Resolution

● Various densities
○ xxhdpi
○ xhdpi
○ mdpi
○ hdpi
○ ldpi



ICA

Multiple resources (might have to watch)

● Create two new virtual devices
○ One with xhdpi, another with mdpi

● Create two of the “same” image 
resources, one for each resolution type

● Add or update code so that image 
displays

● Try running the application on both 
virtual devices

○ https://stackoverflow.com/questions/5099550/how-to-check-an-android-
device-is-hdpi-screen-or-mdpi-screen

https://stackoverflow.com/questions/5099550/how-to-check-an-android-device-is-hdpi-screen-or-mdpi-screen
https://stackoverflow.com/questions/5099550/how-to-check-an-android-device-is-hdpi-screen-or-mdpi-screen


ICA

Multiple resources (might have to watch)

● Create two new virtual devices
○ One with xhdpi, another with mdpi

● Create two of the “same” image resources, 
one for each resolution type

● Add or update code so that image displays
● Try running the application on both virtual 

devices
○ https://stackoverflow.com/questions/5099550/how-to-check-an-android-devi

ce-is-hdpi-screen-or-mdpi-screen

https://stackoverflow.com/questions/5099550/how-to-check-an-android-device-is-hdpi-screen-or-mdpi-screen
https://stackoverflow.com/questions/5099550/how-to-check-an-android-device-is-hdpi-screen-or-mdpi-screen


ICA

Multiple resources (might have to watch)

● Create two new virtual devices
○ One with xhdpi, another with mdpi

● Create two of the “same” image resources, 
one for each resolution type

● Add or update code so that image displays
● Try running the application on both virtual 

devices
○ https://stackoverflow.com/questions/5099550/how-to-check-an-android-devi

ce-is-hdpi-screen-or-mdpi-screen

https://stackoverflow.com/questions/5099550/how-to-check-an-android-device-is-hdpi-screen-or-mdpi-screen
https://stackoverflow.com/questions/5099550/how-to-check-an-android-device-is-hdpi-screen-or-mdpi-screen


Identifiers

● Every UI element should have an ID

<ImageView 

android:id="@+id/team_mascot_image" . . .

● Even if you don’t know if you’re going to need it, always give it one



Why IDs?

● All types of resources (UI elements, strings, colors, images, etc) 
should have a unique identifier
○ For values, use the name attribute
○ For drawables, the file name
○ For UI elements, the android:id attribute

● The ID can be used to reference the resource when you want to use 
or update it



The R class

● The build process automatically 
generates a file called R.java

● This files has a bunch of public 
static final values

● Identifiers for the various resources 
and UI elements are placed here



R use 1 - MainActivity.java

Intent intent = new Intent(this, DisplayMessageActivity.class);

EditText editText = (EditText) findViewById(R.id.editText);

String message = editText.getText().toString();

intent.putExtra(EXTRA_MESSAGE, message);

startActivity(intent);



R use 2 - DisplayMessageActivity.java

// Get the Intent that started this activity and extract the string

Intent intent = getIntent();

String message = intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

// Capture the layout's TextView and set the string as its text

TextView textView = findViewById(R.id.textView);

textView.setText(message);



If time permits

● Try experimenting with a set of alternative resources of your own
○ Not including the ones already shown


