
CSc 317
Android App Basics

Benjamin Dicken

Announcements

● FYI: Readings and topics could change!
● PA due next week
● Discord?
● Office hours
● Quiz
● How to compress your project

File -> Export

Java or Kotlin?

● Java vs Kotlin
● Kotlin is the officially preferred Android Dev language
● May use if you want to learn the new syntax
● In class will mostly stick to Java

MyFirstApp Prep

● As a part of your first reading, you’ll create a simple app
○ Do the readings!

● We will go through some of the basics today

MyFirstApp

● Install Android Studio
● Create a new app (empty activity, Java)

MyFirstApp

● Let’s inspect a few files:
○ MainActivity.java

○ Activity_main.xml (text)

○ AndroidManifest.xml

○ build.gradle

● Will be using java + xml heavily

Run the app in the emulator

● What are emulators?
● Can create one for simulating various devices

Modify the UI with the GUI

● Click on activity_main.xml
● See Code view and Design view
● Configure some settings

MyFirstApp

● Make the app look like this
● Add a plain text and a button
● Then, change so that it starts a

new page (activity) when the
button is clicked with the text
from the plaintext displayed

MyFirstApp

● The instructions showed you how
to build the UI via GUI

● Let’s look at what happened in
the XML

Activities

● For each activity that was created, two main files:
○ The java class file
○ The layout file

MyFirstApp

MyFirstApp

● When you created the string
resources, they were actually
added to the strings.xml file.

● To add resources to an android
program, add them to a directory
or XML file in the res dir

MyFirstApp

ICA

Change the button label to say “Let’s Go”

● Add a new string to strings.xml
● Change the activity_main.xml
● Run the app

Custom Color

● You can also add custom colors (colors.xml)
● You can reference the color using the name

○ Use *meaningful* names
● Colors based on hexadecimal value

ICA

Add color

● Add a new custom colors to
strings.xml
○ You can use a color picker to

choose a color
● Change the background color of the

ContraintLayout and of the Button
and the background using the
android:background attribute

● Run the app

ICA

Add some text

● Add a paragraph of text to the
Layout using a TextView tag

● Should have:
○ Large font
○ Blue
○ Centered/padded

● Text/color should be added to
strings.xml/colors.xml

● Run the app

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center"

 android:padding=???

 android:text=???

 android:textColor=???

 android:textSize=??? />

Why the overlap?

ConstraintLayout vs LinearLayout

● ConstraintLayout: Layout out elements relative to one another
○ Notice things like:

app:layout_constraintEnd_toStartOf="@+id/button"

● LinearLayout: Layout out sequentially, either vertically or
horizontally

<LinearLayout

 . . .

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical">

ICA

Change the Layout

● Use a LinearLayout
● Set to vertical layout
● Remove the app:layout_* and

tools:layout_* attributes
● Ensure android:layout_width and

android:layout_height are defined
for the three nested elements

<LinearLayout

 . . .

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical">

ImageView

● ImageView: View for displaying an image
○ Specify an id
○ Specify the id of the image resource

■ android:src="@drawable/drawable_resource_id"

○ Can also specify, withd, height, etc.
○ For instance:

 <ImageView
 android:id="@+id/suns_logo"

 android:layout_width="200dp"

 android:layout_height="200dp"

 android:src="@drawable/suns_logo" />

Adding an image

● Click and drag an image to the drawable
directory

● Change directory to be named drawable
● Click OK
● If you didn’t change anything else, the ID

should be the image name, not including the
extension

ICA

Add an image

● Download and add an image
● Use a ImageView
● Ensure android:layout_width

and android:layout_height are
defined

<ImageView

 android:id="@+id/some_id"

 android:layout_width="200dp"

 android:layout_height="200dp"

 android:src="@drawable/some_id" />

