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Weekly Planner Book
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Weekly Planner Program
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Running: week_planner.py
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for task: Sunday
take nap
task: Friday

get take-out
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Day of week for task:
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Dictionary Mapping String to List

'Sunday’

['take nap', 'work out', 'relax']

'Monday'

['chores', 'prep problem']

'"Tuesday'

—>
—P>
—>

['grocery shop', 'submit PA']




import graphics

DAYS_IN ORDER = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday',

def draw_calendar_view(gui, tasks):
""" Draw a view that shows the days of the week and the tasks

def get_input():
''' Get a day and task input from the user, return them both.

def main():
"' (A) Create an dictionary to store the tasks.
Should map day string to a list of tasks
(B) Create canvas

(C) Repeatedly get user input, and update canvas after each one

main()

'Friday’,

'Saturday']



Activity
Implement get _input

def get_input():
''' Get a day and task input from the user, return them both.

(A) Get the day input from the user

(B) If the input is 'exit' then just return 'exit'

(C) Get the task string

(D) return both of the strings (use multiple return)



The get _input function

def get_input():
day = input('Day of week for task: ')
if day == 'exit':
return 'exit’, ‘exit’
task = input('Task for ' + day + ": ')
return day, task



Activity
Implement draw_calendar view

def draw_calendar view(gui, tasks):

gui.clear()

location = 25

width = 150

height = 200

border = 25

for day in DAYS_IN ORDER:
gui.rectangle(location, border, width, height, 'blue’)
gui.rectangle(location+2, border+2, width-4, height-4, 'white')
gui.text(location+19, border + 10, day, 'dark green', border)
gui.line(location+2, 70, location+width-2, 70, 'red', 3)

# TODO: draw the tasks!

location += width
gui.update_frame(60)



def draw_calendar_view(gui, tasks):

gui.clear()
location = 25
width = 150
height = 200
border = 25
for day in DAYS_IN_ORDER:
gui.rectangle(location, border, width, height, 'blue’)
gui.rectangle(location+2, border+2, width-4, height-4, 'white')
gui.text(location+10, border + 10, day, 'dark green', border)
gui.line(location+2, 70, location+width-2, 70, 'red', 3)
task_offset = 80
for task in tasks[day]:
gui.text(location+10, task offset, task, 'black’', 15)
task_offset += 20
location += width
gui.update_frame(60)



Activity
Implement main

def main():
"' (A) Create the graphics canvas
(B) Create the dictionary that will map strings (days of
the week) to a list (the list of tasks for that day)
(C) Create a loop to repeatedly get input from the user
(D) On each iteration, get input, then update the canvas



The main function

def main():
gui = graphics.graphics(1100, 250, 'weekly planner')
tasks = {}
for day in DAYS_IN_ORDER:
tasks[day] = []
draw_calendar_view(gui, tasks)
while True:
day, task = get_input()
if day == ‘'exit':
return
tasks[day].append(task)
draw_calendar_view(gui, tasks)



import graphics def get_input():

DAYS_IN_ORDER = ['Sunday', 'Monday', 'Tuesday', This function does:
'Wednesday', 'Thursday', 'Friday', 'Saturday’] (A) Get the day input from the user
(B) If the input is 'exit' then just return 'exit’
def draw_calendar_view(gui, tasks): (C) Get the task string

e (D) return both of the strings (use multiple return)
This function's job is to draw the days of the week in a calendar Returns two strings, a day and task
view, and putting the tasks on each day. e
gui: the graphics object day = input('Day of week for task: ')
tasks: dictionary of tasks if day == 'exit':
This function does not need to return anything. return 'exit', ‘exit’
e task = input('Task for ' + day + ": ')
gui.clear() return day, task
location = 25
width = 150 def main():
height = 200 gui = graphics.graphics(1100, 250, 'weekly planner')
border = 25 tasks = {}
for day in DAYS_IN_ORDER: for day in DAYS_IN_ORDER:

gui.rectangle(location, border, width, height, 'blue’) tasks[day] = []

gui.rectangle(location+2, border+2, width-4, height-4, 'white')

gui.text(location+10, border + 10, day, ‘'dark green', border) draw_calendar_view(gui, tasks)

gui.line(location+2, 70, location+width-2, 70, 'red', 3)

task_offset = 80 while True:

for task in tasks[day]: day, task = get_input()

gui.text(location+10, task_offset, task, 'black’, 15) if day == 'exit':
task_offset += 20 return

location += width tasks[day].append(task)

gui.update_frame(60) draw_calendar_view(gui, tasks)

main()



Other Ideas

Saving the tasks to a file

Loading the tasks from a file

Wrapping task lines

Inputting the tasks via the canvas, rather than console



