CSc 110
Combining Data Structures

Benjamin Dicken

ILL JUST STAY
A FEW EXTRA
\

Google Calendar

Today < > April 2020 Q @ & Week -

SUN MON TUE WED THU FRI SAT

12 13 14 15 16 17 18

10 AM
Office hour Office Hour
lam 10 = 11am

11 AM

Intro Sequence PhD Progress Rejll Meet with Tito Reserve for Facu
11am - 12pm 11am, GS 906 11am - 12pm 11am, Consult Tg
12 PM
Meeting with Co(Office hour
pm
2PM

12 - 1:30pm
CSc 110 CSc 110 CSc 110
7 Opm 2 - 3:10pm 2 - 3:10pm
3PM

csc 110 csc110 csc 110
4PM 3:30 - 4:40pm 3:30 - 4:40pm 3:30 - 4:40pm

110 staff meetin
5 - 6pm

1PM

5PM

6 PM

Weekly Planner Book

MON. JAN 6

s SUN, JAN 12
. L JANY

FRL JAN 10

WED JANS SAT JANTY

Weekly Planner Program

e -~

Running: week_planner.py

Day of week
Task for Sunday:
Day of week for
Task for Friday:

ey

e [

for task: Sunday
take nap
task: Friday

get take-out

v

Day of week for task:
Python O
Sunday Monday Tuesday Wednesday | Thursday Friday Saturday
take nap prep problem turn in PA prep problem prep problem
grocery shop get take-out

Dictionary Mapping String to List

'Sunday’

['take nap', 'work out', 'relax']

'Monday'

['chores', 'prep problem']

'"Tuesday'

—>
—P>
—>

['grocery shop', 'submit PA']

import graphics

DAYS_IN ORDER = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday',

def draw_calendar_view(gui, tasks):
""" Draw a view that shows the days of the week and the tasks

def get_input():
''' Get a day and task input from the user, return them both.

def main():
"' (A) Create an dictionary to store the tasks.
Should map day string to a list of tasks
(B) Create canvas

(C) Repeatedly get user input, and update canvas after each one

main()

'Friday’,

'Saturday']

Activity
Implement get _input

def get_input():
''' Get a day and task input from the user, return them both.

(A) Get the day input from the user

(B) If the input is 'exit' then just return 'exit'

(C) Get the task string

(D) return both of the strings (use multiple return)

The get _input function

def get_input():
day = input('Day of week for task: ')
if day == 'exit':
return 'exit’, ‘exit’
task = input('Task for ' + day + ": ')
return day, task

Activity
Implement draw_calendar view

def draw_calendar view(gui, tasks):

gui.clear()

location = 25

width = 150

height = 200

border = 25

for day in DAYS_IN ORDER:
gui.rectangle(location, border, width, height, 'blue’)
gui.rectangle(location+2, border+2, width-4, height-4, 'white')
gui.text(location+19, border + 10, day, 'dark green', border)
gui.line(location+2, 70, location+width-2, 70, 'red', 3)

TODO: draw the tasks!

location += width
gui.update_frame(60)

def draw_calendar_view(gui, tasks):

gui.clear()
location = 25
width = 150
height = 200
border = 25
for day in DAYS_IN_ORDER:
gui.rectangle(location, border, width, height, 'blue’)
gui.rectangle(location+2, border+2, width-4, height-4, 'white')
gui.text(location+10, border + 10, day, 'dark green', border)
gui.line(location+2, 70, location+width-2, 70, 'red', 3)
task_offset = 80
for task in tasks[day]:
gui.text(location+10, task offset, task, 'black’', 15)
task_offset += 20
location += width
gui.update_frame(60)

Activity
Implement main

def main():
"' (A) Create the graphics canvas
(B) Create the dictionary that will map strings (days of
the week) to a list (the list of tasks for that day)
(C) Create a loop to repeatedly get input from the user
(D) On each iteration, get input, then update the canvas

The main function

def main():
gui = graphics.graphics(1100, 250, 'weekly planner')
tasks = {}
for day in DAYS_IN_ORDER:
tasks[day] = []
draw_calendar_view(gui, tasks)
while True:
day, task = get_input()
if day == ‘'exit':
return
tasks[day].append(task)
draw_calendar_view(gui, tasks)

import graphics def get_input():

DAYS_IN_ORDER = ['Sunday', 'Monday', 'Tuesday', This function does:
'Wednesday', 'Thursday', 'Friday', 'Saturday’] (A) Get the day input from the user
(B) If the input is 'exit' then just return 'exit’
def draw_calendar_view(gui, tasks): (C) Get the task string

e (D) return both of the strings (use multiple return)
This function's job is to draw the days of the week in a calendar Returns two strings, a day and task
view, and putting the tasks on each day. e
gui: the graphics object day = input('Day of week for task: ')
tasks: dictionary of tasks if day == 'exit':
This function does not need to return anything. return 'exit', ‘exit’
e task = input('Task for ' + day + ": ')
gui.clear() return day, task
location = 25
width = 150 def main():
height = 200 gui = graphics.graphics(1100, 250, 'weekly planner')
border = 25 tasks = {}
for day in DAYS_IN_ORDER: for day in DAYS_IN_ORDER:

gui.rectangle(location, border, width, height, 'blue’) tasks[day] = []

gui.rectangle(location+2, border+2, width-4, height-4, 'white')

gui.text(location+10, border + 10, day, ‘'dark green', border) draw_calendar_view(gui, tasks)

gui.line(location+2, 70, location+width-2, 70, 'red', 3)

task_offset = 80 while True:

for task in tasks[day]: day, task = get_input()

gui.text(location+10, task_offset, task, 'black’, 15) if day == 'exit':
task_offset += 20 return

location += width tasks[day].append(task)

gui.update_frame(60) draw_calendar_view(gui, tasks)

main()

Other Ideas

Saving the tasks to a file

Loading the tasks from a file

Wrapping task lines

Inputting the tasks via the canvas, rather than console

