
CSc 110
Objects and
References

Benjamin Dicken

Objects

● (Most) Of the values in python are objects!

○ Strings are objects "This is an object"
○ Integers are objects 134
○ Lists are objects [1, 4, 8, 2, 6]
○ Dictionaries are objects { "and":10, "or":20 }

● Entities that can be assigned to a variable or passed as an
argument to a function are, typically, objects

Object Types

● Every object has a type (or None)

○ "This is an object" str

○ 134 int

○ [1, 4, 8, 2, 6] list

○ { "and":10, "or":20 } dict

Object Types

● Some types of object are mutable and other
are immutable

○ Mutable object: An object that can be
changed once it is created

○ Immutable object: An object that cannot
be changed once it is created

Object References

● When we are assigning a variable to an object,
we are storing a reference to the object

● When we use the variable name, this “points us”
to the object that is associated with the name

● A few examples . . .

Activity

Object References

What will this print?

title = "William"

name = title

print(name + " " + title)

title = "Josh"

print(name + " " + title)

name_b = name

name = "Stanley"

print(name + " " + name_b + " " + title)

Object References

What will this print?

title = "William"

name = title

print(name + " " + title)

title = "Josh"

print(name + " " + title)

name_b = name

name = "Stanley"

print(name + " " + name_b + " " + title)

William William

William Josh

Stanley William Josh

Activity

Object References

What are the references?

title = "William"
name = title
print(name + " " + title)
title = "Josh"
print(name + " " + title)

name_b = name

name = "Stanley"

print(name + " " + name_b + " " + title)

Variable Objects

Object References

What are the references?

title = "William"
name = title
print(name + " " + title)
title = "Josh"
print(name + " " + title)

name_b = name

name = "Stanley"

print(name + " " + name_b + " " + title)

title

Variable Objects

"William"

Object References

What are the references?

title = "William"
name = title
print(name + " " + title)
title = "Josh"
print(name + " " + title)

name_b = name

name = "Stanley"

print(name + " " + name_b + " " + title)

title

name

Variable Objects

"William"

Object References

What are the references?

title = "William"
name = title
print(name + " " + title)
title = "Josh"
print(name + " " + title)

name_b = name

name = "Stanley"

print(name + " " + name_b + " " + title)

title

name

Variable Objects

"William"

"Josh"

Object References

What are the references?

title = "William"
name = title
print(name + " " + title)
title = "Josh"
print(name + " " + title)

name_b = name

name = "Stanley"

print(name + " " + name_b + " " + title)

title

name

name_b

Variable Objects

"William"

"Josh"

Object References

What are the references?

title = "William"
name = title
print(name + " " + title)
title = "Josh"
print(name + " " + title)

name_b = name

name = "Stanley"

print(name + " " + name_b + " " + title)

title

name

name_b

Variable Objects

"William"

"Josh"

"Stanley"

Activity

Object References

What are the references?

numbers = [50, 30, 80]

more = numbers

more.append(70)

more = [80, 70, 60]

numbers.append(10)

numbers = "look, numbers!"

more = numbers

Object References

What are the references?

numbers = [50, 30, 80]

more = numbers

more.append(70)

more = [80, 70, 60]

numbers.append(10)

numbers = "look, numbers!"

more = numbers

numbers

Variables Objects

[50, 30, 80]

Object References

What are the references?

numbers = [50, 30, 80]

more = numbers

more.append(70)

more = [80, 70, 60]

numbers.append(10)

numbers = "look, numbers!"

more = numbers

numbers

Variables Objects

[50, 30, 80]

more

Object References

What are the references?

numbers = [50, 30, 80]

more = numbers

more.append(70)

more = [80, 70, 60]

numbers.append(10)

numbers = "look, numbers!"

more = numbers

numbers

Variables Objects

[50, 30, 80, 70]

more

Object References

What are the references?

numbers = [50, 30, 80]

more = numbers

more.append(70)

more = [80, 70, 60]

numbers.append(10)

numbers = "look, numbers!"

more = numbers

numbers

Variables Objects

[50, 30, 80, 70]

more [80, 70, 60]

Object References

What are the references?

numbers = [50, 30, 80]

more = numbers

more.append(70)

more = [80, 70, 60]

numbers.append(10)

numbers = "look, numbers!"

more = numbers

numbers

Variables Objects

[50, 30, 80, 70, 10]

more [80, 70, 60]

Object References

What are the references?

numbers = [50, 30, 80]

more = numbers

more.append(70)

more = [80, 70, 60]

numbers.append(10)

numbers = "look, numbers!"

more = numbers

numbers

Variables Objects

[50, 30, 80, 70, 10]

more [80, 70, 60]

"look, numbers!"

Object References

What are the references?

numbers = [50, 30, 80]

more = numbers

more.append(70)

more = [80, 70, 60]

numbers.append(10)

numbers = "look, numbers!"

more = numbers

numbers

Variables Objects

[50, 30, 80, 70, 10]

more [80, 70, 60]

"look, numbers!"

Activity

Object-Reference Diagram

Draw the object-reference diagram for this code.

a = [7, 4, 5]

b = {9, 8, 3}

c = a

a = b

a.add(10)

c.append('hi')

b = 'name'

Object-Reference Diagram

Draw the object-reference diagram for this code.

a = [7, 4, 5]

b = {9, 8, 3}

c = a

a = b

a.add(10)

c.append('hi')

b = 'name'

a

Variables Objects

[7, 4, 5, 'hi']

b
{9, 8, 3, 10}

'name'
c

Object References

● A variable does not actually hold the value of the object within it
● Instead, a reference to the object

○ The object is “sitting” somewhere in your computer’s memory
(RAM)

● When you assign a value to a new variable, one of two things
could happen
○ If you assign it to an existing object, the variable references

that object
○ If you assign it to a new object, the object is created, placed in

memory, and then the variable references it

Garbage Collection

● What about those dangling objects? (see the last example)

Garbage Collection

● What about those dangling objects? (see the last example)
● Taken care of by the Garbage Collector (GC)
● The GC is a part of python that automatically cleans up these

stray objects as the program executes
● As the programmer, you don’t need to worry about them
● In some languages (like C), there is no built-in automatic GC

○ The programmer is responsible for managing memory!

Garbage Collection Example

numbers

Variables Objects

[50, 30, 80, 70, 10]

more [80, 70, 60]

numbers

Variables Objects

[50, 30, 80, 70, 10]

more [80, 70, 60]

"look, numbers!"

Garbage Collection Example

numbers

Variables Objects

Garbage Collected!

more [80, 70, 60]

"look, numbers!"

Garbage Collection Example

numbers

Variables Objects

Garbage Collected!

more [80, 70, 60]

"look, numbers!"

Garbage Collection Example

numbers

Variables Objects

Garbage Collected!

more

"look, numbers!"

Garbage Collected!

Garbage Collection Example

Mutable and Immutable

● This matters when it comes to variable references
○ Especially when it comes to passing a variable into a

function via a function parameter

● When you pass a variable as an argument to a function, the
parameter variable is a reference to the same object that was
at the call-site
○ If the object type is mutable, the function can mutate it
○ If immutable, the function cannot mutate it

Activity

Passing Immutable Object by Reference

What will this program print out when executed?

def append_stuff(param):

 param = param + " stuff"

 print(param)

 param = "NEW!"

 print(param)

name = "Earl Button"

append_stuff(name)

print(name)

Activity

Passing Immutable Object by Reference

What are the references? How many elements GCed?

def append_stuff(param):

 param = param + " stuff"

 print(param)

 param = "NEW!"

 print(param)

name = "Earl Button"

append_stuff(name)

print(name)

Passing Immutable Object by Reference

What are the references? How many elements GCed?

def append_stuff(param):

 param = param + " stuff"

 print(param)

 param = "NEW!"

 print(param)

name = "Earl Button"

append_stuff(name)

print(name)

name

Variables Objects

"Earl Button"

param "Earl Button stuff"

"NEW!"

Garbage Collected!

Garbage Collected!

Activity

Passing Mutable Object by Reference

What will this program print out when executed?

def append_stuff(param):

 param.append("Max")

 print(param)

 param = "STRING!"

 print(param)

items = ["Ben", "Sam", "Kim"]

append_stuff(items)

print(items)

Activity

Passing Mutable Object by Reference

What are the references?

def append_stuff(param):

 param.append("Max")

 print(param)

 param = "STRING!"

 print(param)

items = ["Ben", "Sam", "Kim"]

append_stuff(items)

print(items)

Passing Mutable Object by Reference

What are the references?

def append_stuff(param):

 param.append("Max")

 print(param)

 param = "STRING!"

 print(param)

items = ["Ben", "Sam", "Kim"]

append_stuff(items)

print(items)

items

Variables Objects

["Ben", "Sam", "Kim"]

param "STRING!"

["Ben", "Sam", "Kim", "Max"]

Activity

Draw the reference diagram

position = 'Dir of Videography'

sp = position.split(' ')

p2 = position.strip('ypgrha')

Activity

Draw the reference diagram

position = 'Dir of Videography'

sp = position.split(' ')

p2 = position.strip('ypgrha')

p3 = p2

p2 = position

position = p3

p2 = p2.strip('oe')

Activity

Draw the reference diagram

def update_list(e):

 e2 = e

 e = []

 for i in range(0, 3):

 e.append(i)

 e2.append(i+1)

numbers = [5, 15, 10]

update_list(numbers)

print(numbers)

Activity

Draw the reference diagram

def update(elements, label):

 elements.sort()

 label_2 = label

 label = label.strip('aeiou')

 return label

numbers = [5, 15, 10]

word = 'aerospace'

word = update(numbers, word)

print(numbers, word)

