CS 110 Math in Python

Benjamin Dicken

Announcements

- PA 2
- Group seating
- Videos for online
- Log in to Gradescope

The Mathematical Operators

- + Addition
- Subtraction
- * Multiplication
- / Division
- // Integer Division
- ** Exponent
- % Modulus

The Mathematical Operators

- + Addition 🚽
- Subtraction
- Multiplication
- / Division
- // Integer Division
- ** Exponent
- % Modulus

Note: using these on 2 integers functions
differently than it does when strings are involved!

Strings vs Ints (Addition)

What will the value of each of these variables be? No Computers!

- a = '4' + 5
- b = 20 + 15
- c = 2 + 'Hi there'
- d = 'Hi there' + 'Hi there'

Strings vs Ints (Multiplication)

What will the value of each of these variables be? No Computers!

- a = '4' * 5
- b = 20 * 15
- c = 2 * 'Hi there'
- d = 'Hi there' * 'Hi there'

What will the value of the variables be?

4

a	=	3	+	3	-	2 *		
b	=	5	*	5	/	10		
d	=	а	-	b	*	2		
print(d)								

What will the value of the variables be?

What will the value of the variables be?

$$a = 3 + 3 - 2 * 4$$
-2 $b = 5 * 5 / 10$ 2.5 $d = a - b * 2$

What will the value of the variables be?

а	=	3	+	3	-	2 * 4	-2
b	=	5	*	5	/	10	2.5
d	=	а	-	b	*	2	-7.0

Mathematical Expressions

- The math on the left-hand side of the equals-sign in the previous example are referred to as **mathematical expressions**
- A mathematical expression is a combination of one or more operands and zero or more operators that produce a value

Mathematical Expressions

- The math on the left-hand side of the equals-sign in the previous example are referred to as **mathematical expressions**
- A mathematical expression is a combination of one or more operands and zero or more operators that produce a value
 - **Operand:** A value or variable in a math expression
 - Operator: A symbol that represents a mathematical operation (such as + - * / // ** %)

• What does PEMDAS stand for?

- What does PEMDAS stand for?
- The operator precedence:
- 1. First Parentheses,
- 2. Then Exponentiation
- 3. Multiplication and Division have equal precedence
- 4. Lastly, Addition and Subtraction have equal precedence

- What does PEMDAS stand for?
- The operator precedence:
- 1. First Parentheses,
- 2. Then Exponentiation
- 3. Multiplication and Division have equal precedence
- 4. Lastly, Addition and Subtraction have equal precedence

This is also where

and modulus rank

integer division

- What does PEMDAS stand for?
- The operator precedence:
- 1. First Parentheses,
- 2. Then Exponentiation
- 3. Multiplication and Division have equal precedence
- 4. Lastly, Addition and Subtraction have equal precedence

This is also where

and modulus rank

integer division

If there is a tie, then python will evaluate the math left-to-right

Area of Circle

• Write a program that takes a diameter, and calculates the area of the corresponding circle

Area =
$$3.14 \times r^2$$

Enter circle diameter: 5 Area of circle with diameter 5.0 is 19.625

Area of Circle

Author: Benjamin Dicken

Course: CSc 110

Description: This program accepts a circle diameter as input.

it then calculates and prints the area for that circle.

diameter = float(input('Enter circle diameter: '))
area = 3.14 * (diameter / 2)**2
print('Area of circle with diameter', diameter, 'is', area)

Parentheses

- Parentheses can be used in mathematical expressions
- Specifically, they can be used to force a particular order of operations
- Similar to regular math!

PEMDAS

• What value will each of these variables take on? No computers!

┛

$$a1 = 5 / 5 * 10 * 5$$

 $a2 = 5 / (5 * 10) * 5$

$$b1 = 5 * 10 - 2$$

 $b2 = 5 * (10 - 2)$

• What value will each of these variables take on? No computers!

$$a1 = 5 / 5 * 10 * 5$$
 50.0 $a2 = 5 / (5 * 10) * 5$ 0.5 $b1 = 5 * 10 - 2$ 48 $b2 = 5 * (10 - 2)$ 40

Integer Division

• What value will this variable take on? No computers!

b = (3 // (4 // 5)) + 1

• Who here likes basketball?

- Who here likes basketball?
- Who here is familiar with the rules of basketball?

- Who here likes basketball?
- Who here is familiar with the rules of basketball?
- Who knows what **shooting percentage** means?

- Who here likes basketball?
- Who here is familiar with the rules of basketball?
- Who knows what **shooting percentage** means?
- Who knows what **true shooting percentage** (TS%) means?

3's vs 2's vs FT's (free throws)

Shooting Percentage

- The percentage of the shots that a player makes out of all of the shots attempted
- Generally, the higher the better
- However . . .

Shooting Percentage

- The percentage of the shots that a player makes out of all of the shots attempted
- Generally, the higher the better
- However . . .

Player A: Takes only 3's, makes 7/15 Player B: Takes only 2's, makes 10/15

Which is better?

Shooting Percentage

- The percentage of the shots that a player makes out of all of the shots attempted
- Generally, the higher the better
- However . . .

Regular shooting percentage doesn't tell the whole story!

Player A: Takes only 3's, makes 7/15 Player B: Takes only 2's, makes 10/15

Which is better?

True Shooting Percentage

• A shooting percentage that takes into account the various types of shots a player can take

True Shooting Percentage

- A shooting percentage that takes into account the various types of shots a player can take
- The formula (from Wikipedia):

$$TS\% = rac{PTS}{2(FGA + (0.44 imes FTA))}$$
x 100

Implement tsp.py

- Write a program that takes three values as input
- Calculates and prints out the TS%, for example:

```
Enter points scored:

25

Enter FG attempts:

20

Enter FT attempts:

5

True Shooting Percentage: 56.31%
```

$$TS\% = rac{PTS}{2(FGA + (0.44 imes FTA))}$$
x 100

tsp.py

points = int(input('Enter points scored:\n'))

- fga = int(input('Enter FG attempts:\n'))
- fta = int(input('Enter FT attempts:\n'))

tsp.py

points = int(input('Enter points scored:\n')) fga = int(input('Enter FG attempts:\n')) fta = int(input('Enter FT attempts:\n'))

tsp = (points / (2 * (fga + (0.44 * fta)))) * 100

tsp.py

points = int(input('Enter points scored:\n')) fga = int(input('Enter FG attempts:\n')) fta = int(input('Enter FT attempts:\n'))

tsp = (points / (2 * (fga + (0.44 * fta)))) * 100

print('True Shooting Percentage: ' + str(round(tsp, 2)) + '%')

Implement sp.py

- Write a program that takes two
- Calculates and prints out the (regular) shooting percentage
- For example:

```
Enter shots taken:
17
Enter shots made:
10
Shooting Percentage: 58.82%
```

sp.py

```
shots = int(input('Enter shots taken:\n'))
made = int(input('Enter shots made:\n'))
```

```
sp = made / shots * 100
```

print('Shooting Percentage: ' + str(round(sp, 2)) + '%')