
CS 250
SQL and SQLite

Benjamin Dicken

SQL
● SQL (Structured Query Language) is a programming language

designed for managing schema and data held in a relational database
management system (RDBMS)

SQLite
● SQLite is a relational database management system written in the C

programming language. In contrast to many other database
management systems, SQLite is not a client–server database engine.
Rather, it is embedded into the end program.

● We use SQL to insert, remove, and access the data in a SQLite database
● Specifically, we are using SQLite version 3
● Installation instructions: tutorialspoint.com/sqlite/sqlite_installation.htm

https://www.tutorialspoint.com/sqlite/sqlite_installation.htm

SQLite
● SQLite is a C library that acts as a lightweight DBMS

○ doesn’t require a separate server process and allows accessing the
database

○ Uses a standard variant of the SQL query language
○ Some applications use SQLite for internal data storage
○ Since so lightweight, often prototype an application using SQLite

and then port the code to a larger database such as PostgreSQL or
Oracle

Learning SQL with SQLite

SQLite
● To start the SQLite 3 from bash:

● This starts up the sqlite3 program
○ If a SQL database file with the name ex1 exists in the current

directory, this will user that database
○ If not, will create a new database named ex1

$ sqlite3 ex1

SQLite
● At this points, we are connected to the DB using the SQLite DBMS
● From here, the user must use the SQL programming language to

○ Create tables
○ Add data
○ Remove data
○ Query the tables
○ Create relationships

SQL - create tables
● The first SQL command we will learn about is CREATE
● Use the CREATE command to create a new table
● The format is

CREATE TABLE table_name(
 column1 datatype,
 column2 datatype,
 ...
 columnN datatype);

SQL - create tables
● Each attribute (column) has a TYPE.
● SQLite supports many, many types, but we will focus on only a few in

this class
○ INT - integer numbers (like python int)
○ FLOAT - floating-point numbers (like python float)
○ TEXT - sequence of characters (like python str)
○ BOOLEAN - true (1) or false (0) (like python bool)

https://www.tutorialspoint.com/sqlite/sqlite_data_types.htm

SQL - create tables

CREATE TABLE character(
 name TEXT,
 cid INT,
 pid INT);

CREATE TABLE person(
 name TEXT,
 pid INT);

CREATE TABLE movie(
 title TEXT,
 mid INT);

SQL - create tables

CREATE TABLE character(
 name TEXT,
 description TEXT,
 is_good BOOLEAN,
 appearances INT,
 cid INT);

SQL - create tables
● SQL CREATE resources:

○ sqlite.org/lang_createtable.html
○ tutorialspoint.com/sqlite/sqlite_create_table.htm

https://sqlite.org/lang_createtable.html
https://sqlite.org/lang_createtable.html
https://www.tutorialspoint.com/sqlite/sqlite_create_table.htm
https://www.tutorialspoint.com/sqlite/sqlite_create_table.htm

SQL - inserting
● The next SQL command we will learn about is INSERT
● Use the INSERT command to add rows to an existing table
● The format is

INSERT INTO TABLE_NAME
 (column1, column2, … columnN)
VALUES
 (value1, value2, … valueN);

SQL - inserting

INSERT INTO character (name, cid, pid)
VALUES (‘Thor’, 1, 4);

INSERT INTO character (name, cid, pid)
VALUES (‘Batman’, 2, 7);

INSERT INTO character (name, cid, pid)
VALUES (Superman, 3, 1);

SQL - inserting

INSERT INTO character
 (name, description, is_good, appearances, cid)
VALUES
 (‘Batman’, ‘Rich Hero Dude’, 1, 137, 2);

INSERT INTO character VALUES
 (‘Batman’, ‘Rich Hero Dude’, 1, 137, 2);

SQL - inserting
● SQL INSERT resources:

○ sqlite.org/lang_insert.html
○ tutorialspoint.com/sqlite/sqlite_insert_query.htm

https://sqlite.org/lang_insert.html
https://sqlite.org/lang_insert.html
https://www.tutorialspoint.com/sqlite/sqlite_insert_query.htm
https://www.tutorialspoint.com/sqlite/sqlite_insert_query.htm

SQL - deleting
● The next SQL command we will learn about is DELETE
● Use the DELETE command to delete row(s) from an existing table
● The format is

● Will delete all rows that match the condition

DELETE FROM table_name
WHERE condition;

SQL - deleting

DELETE FROM character where cid = 1;

DELETE FROM movie where title = ‘Batman Begins’;

DELETE FROM person where name = ‘Chris Nolan’;

SQL - deleting
● SQL DELETE resources:

○ sqlite.org/lang_delete.html
○ tutorialspoint.com/sqlite/sqlite_delete_query.htm

https://sqlite.org/lang_delete.html
https://sqlite.org/lang_delete.html
https://www.tutorialspoint.com/sqlite/sqlite_delete_query.htm
https://www.tutorialspoint.com/sqlite/sqlite_delete_query.htm

SQL - select
● The next SQL command we will learn about is SELECT
● Use the SELECT command to extract information from tables in the DB
● The format is

● Will return each of the specified columns from table_name

SELECT column1, column2, ... columnN
FROM table_name;

SQL - select

SELECT name FROM person;

SELECT cid, name FROM character;

SELECT * FROM movie;

SQL - select
● The SELECT comment has an optional WHERE clause
● A condition is specified after the WHERE keyword
● Only rows in which the condition holds true will be returned

SELECT column1, column2, ... columnN
FROM table_name
WHERE condition;

SQL - select
● Multiple WHERE clauses can be specified with AND / OR

SELECT column1, column2, ... columnN FROM table_name
WHERE condition1 AND condition2 AND conditionN;

SELECT column1, column2, ... columnN FROM table_name
WHERE condition1 OR condition2 OR conditionN;

SQL - select

SELECT name FROM person WHERE cid = 1;

SELECT * FROM character
WHERE description <> ‘A Rich Dude’ OR name == ‘Thor’;

SELECT * FROM character
WHERE description = ‘something’ AND cid > 3;

SQL - select
● SQL SELECT resources:

○ https://www.tutorialspoint.com/sqlite/sqlite_select_query.htm
○ https://sqlite.org/lang_select.html

https://www.tutorialspoint.com/sqlite/sqlite_select_query.htm
https://www.tutorialspoint.com/sqlite/sqlite_select_query.htm
https://sqlite.org/lang_select.html
https://sqlite.org/lang_select.html

SQL - full example

$ sqlite3 heromovies
SQLite version 3.14.0 2016-07-26 15:17:14
Enter ".help" for usage hints.
sqlite>

SQL - full example

sqlite> CREATE TABLE character(name TEXT, description TEXT, is_good
BOOLEAN, appearances INT, cid INT);
sqlite>
sqlite> INSERT INTO character (name, description, is_good, appearances,
cid) VALUES ('Batman', 'Bat-like super hero', 1, 1284, 1);
sqlite>
sqlite> INSERT INTO character (name, description, is_good, appearances,
cid) VALUES ('Thor', 'Hero from another planet', 1, 572, 2);
sqlite>
sqlite> INSERT INTO character (name, description, is_good, appearances,
cid) VALUES ('Superman', 'Hero from another planet', 1, 1752, 3);

SQL - full example

sqlite> SELECT * FROM character;
Batman|Bat-like super hero|1|1284|1
Thor|Hero from another planet|1|572|2
Superman|Hero from another planet|1|1752|3
sqlite>

SQL - full example

sqlite> SELECT description, name, is_good FROM character;
Bat-like super hero|Batman|1
Hero from another planet|Thor|1
Hero from another planet|Superman|1
sqlite>

SQL - full example
sqlite> SELECT name, description FROM character WHERE
description = 'Hero from another planet';
Thor|Hero from another planet
Superman|Hero from another planet
sqlite>

sqlite> SELECT name, description FROM character WHERE
description <> 'Hero from another planet';
Batman|Bat-like super hero
sqlite>

SQL - full example

sqlite> SELECT cid, name, description FROM character WHERE
cid = 1 OR cid = 2;
1|Batman|Bat-like super hero
2|Thor|Hero from another planet
sqlite>

sqlite> SELECT cid, name, description FROM character WHERE
cid = 1 AND cid = 2;
sqlite>

SQL - full example

$ sqlite3 ex1
SQLite version 3.8.5 2014-05-29 12:36:14 Enter ".help" for
usage hints.
sqlite> create table tbl1(one varchar(10), two smallint);
sqlite> insert into tbl1 values('hello!',10);
sqlite> insert into tbl1 values('goodbye', 20);
sqlite> select * from tbl1;
hello!|10
goodbye|20
sqlite>

SQL - specifying relationships
● We can create multiple tables in

a single database
● cid, mid, and pid are supposed

to reference IDs from other
tables

● But there is nothing keeping us
from putting invalid IDs in there!

CREATE TABLE character(
 name TEXT,
 cid INT,
 pid INT);

CREATE TABLE person(
 name TEXT,
 pid INT);

CREATE TABLE movie(
 title TEXT,
 mid INT);

SQL - specifying relationships
● We should specify a PRIMARY

KEY for each table
● A primary key specifies which

column uniquely identifies each
row

● Often this is an integer ID, as it
is in this case

CREATE TABLE character(
 name TEXT,
 cid INT PRIMARY KEY,
 pid INT);

CREATE TABLE person(
 name TEXT,
 pid INT PRIMARY KEY);

CREATE TABLE movie(
 title TEXT,
 mid INT PRIMARY KEY);

SQL - specifying relationships
● Relationships should be

specified with a FOREIGN KEY
● Create a FOREIGN KEY from

the ID in one table to a primary
key in another table

CREATE TABLE character(
 name TEXT,
 cid INT PRIMARY KEY,
 pid INT,
 FOREIGN KEY(pid) REFERENCES
 person(pid));

CREATE TABLE person(
 name TEXT,
 pid INT PRIMARY KEY);

CREATE TABLE movie(
 title TEXT,
 mid INT PRIMARY KEY);

SQL - specifying relationships
● Use this command to make sure

that FOREIGN KEY restrictions
are enabled

PRAGMA foreign_keys = ON;

● In-class Exercise (picking up from previous lecture)
○ Model Ford Motor Company’s manufacturing database
○ Ford manufactures cars at multiple locations in the US

■ Flat Rock Assembly Plant 1, Michigan
■ Chicago Assembly, Illinois
■ Dearborn Truck, Michigan
■ Kansas City Assembly, Missouri

○ Ford manufactures many types of cars
■ F-150, Mustang, Focus, Explorer, Flex, ...

○ Ford sells to many customers
■ Dealerships, Companies, Gov’t, Individuals, ...

● In-class Exercise (picking up from previous lecture)
■ Tables: Facility Item Purchase Customer
■ Relationships to model

● Facility <-> Item
● Item <-> Purchase
● Purchase <-> Customer

● In-class Exercise (picking up from previous lecture)
○ Define the schema with CREATE statements

■ Make sure to specify the FOREIGN KEYS
○ Insert a few rows into each table with INSERT

● Reading Materials
○ www.w3schools.com/sql
○ www.tutorialspoint.com/sql

SQL and SQLite

https://www.w3schools.com/sql/
https://www.w3schools.com/sql/
https://www.tutorialspoint.com/sql/
https://www.tutorialspoint.com/sql/

