
CS 250
Advanced SQL and SQLite

Benjamin Dicken

Advanced SQL
● There are many options to configure how SQLite behaves when

interacting through the command prompt
● The commands used to change these configuration options are often

referred to as "dot-commands"
○ Because you type a dot, then the name of the option, and then what

you want the option to be set to

Advanced SQL
● In these slides we’ll use the schema and data from lab 10 when

demonstrating how these dot-command work
● Recall:

CREATE TABLE director (
 first_name TEXT,
 last_name TEXT,
 age INT,
 director_id INT);

CREATE TABLE movie (
 title TEXT,
 year INT,
 rt_rating INT,
 movie_id INT,
 director_id INT);

Advanced SQL
● The first dot-command we will discuss is .mode
● The .mode option allows us to change the format in which SQL queries

format the results
● There are 8 different .mode options

○ csv column html insert line list quote tabs tcl
● The default is “list”

Advanced SQL
● By default, the results of a SELECT are kinda ugly (list mode)

sqlite> SELECT * FROM movie;
King Kong|2005|84|1|4
Flags of Our Fathers|2006|73|2|3
Man of Steel|2013|55|3|1
Super 8|2011|82|4|5
Open Range|2003|79|5|7
The Kings Speech|2010|95|6|2
Hacksaw Ridge|2016|87|7|6

Advanced SQL
● csv mode outputs the rows in valid CSV format

sqlite> .mode csv
sqlite> SELECT * FROM movie;
"King Kong",2005,84,1,4
"Flags of Our Fathers",2006,73,2,3
"Man of Steel",2013,55,3,1
"Super 8",2011,82,4,5
"Open Range",2003,79,5,7
"The Kings Speech",2010,95,6,2
"Hacksaw Ridge",2016,87,7,6

Advanced SQL
● html mode outputs the rows in an html table (for you web programmers)

sqlite> .mode html
sqlite> SELECT * FROM movie;
<TR><TD>King Kong</TD>
<TD>2005</TD>
<TD>84</TD>
<TD>1</TD>
<TD>4</TD>
</TR>
<TR><TD>Flags of Our Fathers</TD>
<TD>2006</TD>
<TD>73</TD>
...

Advanced SQL
● column mode formats the columns for easy reading!

sqlite> .mode column
sqlite> SELECT * FROM movie;
King Kong 2005 84 1 4
Flags of O 2006 73 2 3
Man of Ste 2013 55 3 1
Super 8 2011 82 4 5
Open Range 2003 79 5 7
The Kings 2010 95 6 2
Hacksaw Ri 2016 87 7 6

Advanced SQL
● insert mode generates insert commands to replicate the table

sqlite> .mode insert
sqlite> SELECT * FROM movie;
INSERT INTO table VALUES('King Kong',2005,84,1,4);
INSERT INTO table VALUES('Flags of Our Fathers',2006,73,2,3);
INSERT INTO table VALUES('Man of Steel',2013,55,3,1);
INSERT INTO table VALUES('Super 8',2011,82,4,5);
INSERT INTO table VALUES('Open Range',2003,79,5,7);
INSERT INTO table VALUES('The Kings Speech',2010,95,6,2);
INSERT INTO table VALUES('Hacksaw Ridge',2016,87,7,6);

Advanced SQL
● line mode generates lines with variable assignments

sqlite> SELECT * FROM movie;
 title = King Kong
 year = 2005
 rt_rating = 84
 movie_id = 1
director_id = 4

 title = Flags of Our Fathers
 year = 2006
 rt_rating = 73
 movie_id = 2
director_id = 3
...

Advanced SQL
● Notice that the “wide” columns get cut off!
● By default, each column is between 1 and 10 characters wide,

depending on the column header name and the width of the first
column of data

● Data that is too wide to fit in a column is truncated
● Use the .width dot-command to adjust column widths

Advanced SQL
● .width specifies the column width for each column

○ The width of each column is controlled individually

sqlite> .mode column
sqlite> .width 20 4 4 4 4
sqlite> SELECT * FROM movie;
King Kong 2005 84 1 4
Flags of Our Fathers 2006 73 2 3
Man of Steel 2013 55 3 1
Super 8 2011 82 4 5
Open Range 2003 79 5 7
The Kings Speech 2010 95 6 2
Hacksaw Ridge 2016 87 7 6

Advanced SQL
● It is easy to lose track of the named of each column, and the order that

they are printed in
● The .header dot-command allows you to optionally show/hide the

names of each column in the output
● This is set to off by default

Advanced SQL
● The .header option on

sqlite> .header on
sqlite> SELECT * FROM movie;
title yea rt_rating movie_id director_id
-------------------- --- ---------- ---------- -----------
King Kong 200 84 1 4
Flags of Our Fathers 200 73 2 3
Man of Steel 201 55 3 1
Super 8 201 82 4 5
Open Range 200 79 5 7
The Kings Speech 201 95 6 2
Hacksaw Ridge 201 87 7 6

Advanced SQL
● The .header option off

sqlite> .header off
sqlite> SELECT * FROM movie;
King Kong 200 84 1 4
Flags of Our Fathers 200 73 2 3
Man of Steel 201 55 3 1
Super 8 201 82 4 5
Open Range 200 79 5 7
The Kings Speech 201 95 6 2
Hacksaw Ridge 201 87 7 6

Advanced SQL
● The .databases option prints info about current the database(s)

sqlite> .databases
seq name file
--- --------------- --
0 main /Users/bddicken/dev/personal-site/courses/cs250/labs/lab-1

Advanced SQL
● The .tables dot-command shows all of the tables in the current

database file

sqlite> .tables
director movie

Advanced SQL
● The .schema option shows the full schema (CREATE statements) for the

current database
sqlite> .schema
CREATE TABLE director (
 first_name TEXT,
 last_name TEXT,
 age INT,
 director_id INT);
CREATE TABLE movie (
 title TEXT,
 year INT,
 rt_rating INT,
 movie_id INT,
 director_id INT);

Advanced SQL
● There is also a dot-command for loading data from a file directly

into a database table
● We need to use .mode and .import together

○ First need to set the .mode to csv
○ Then, import the file

Advanced SQL
● Say we have a csv file named city.csv

with the following format
● We want to quickly load all of this

data into a table
● Do not want to run a bunch of

individual INSERT statements!

name,population
Abilene,115930
Akron,217074
Albany,93994
Albuquerque,448607
Alexandria,128283
Allentown,106632
Amarillo,173627
Anaheim,328014
...

Advanced SQL
● Start up sqlite3 with a new (or

existing) database file
● Set the .mode to csv

$ sqlite3 citydb
SQLite version 3.14.0
2016-07-26 15:17:14
Enter ".help" for usage
hints.
sqlite> .mode csv

Advanced SQL
● Use .import to load the contents of

the file into a table
○ First type .import
○ Then write the file name
○ Last, put the table name sqlite> .import city.csv city

Advanced SQL
● SQLite created a table and put all of

the CSV rows into it!
sqlite> SELECT * FROM city;
Abilene,115930
Akron,217074
Albany,93994
Albuquerque,448607
Alexandria,128283
Allentown,106632
Amarillo,173627
...

Advanced SQL
● There is also a dot-command for dumping data from a table to a

csv file
● We need to use .mode, .headers, and .out together

○ First need to set the .mode to csv
○ Enable headers with .headers on
○ Use .out to save the data

Advanced SQL
● Say we have the same city

table from before
sqlite> SELECT * FROM city;
Abilene,115930
Akron,217074
Albany,93994
Albuquerque,448607
Alexandria,128283
Allentown,106632
Amarillo,173627
...

Advanced SQL
● Ensure sqlite3 is in CSV mode
● Ensure headers are turned on
● Use .out and then specify a

name of an output file
● SELECT all of the rows, which

will be sent to the file
● exit!

sqlite> .mode csv
sqlite> .headers on
sqlite> .out save-cities.csv
sqlite> SELECT * FROM city;
sqlite> .exit

Advanced SQL
● SQLite can write data files in other supported formats
● To do so, just change the .mode to the desired format
● Let’s try (to the command line!)

Advanced SQL
● SQLite has many dot-commands
● For a listing of the available dot commands, you can enter .help

at any time
sqlite> .help
.auth ON|OFF Show authorizer callbacks
.backup ?DB? FILE Backup DB (default "main") to FILE
.bail on|off Stop after hitting an error. Default OFF
.binary on|off Turn binary output on or off. Default OFF
.changes on|off Show number of rows changed by SQL
.clone NEWDB Clone data into NEWDB from the existing database
.databases List names and files of attached databases
...

Advanced SQL
● The DROP command is

used to remove tables
from a database

sqlite> CREATE TABLE movie (
 ...> title TEXT,
 ...> year INT,
 ...> rt_rating INT,
 ...> movie_id INT,
 ...> director_id INT);
sqlite>
sqlite> .tables
movie
sqlite>
sqlite> DROP TABLE movie;
sqlite>
sqlite> .tables
sqlite>

Advanced SQL
● The UPDATE command is used to modify value(s) in a row that already

exists in a database table
● A well-formed UPDATE command has three main parts
● The table to update, the column(s) to change, and the condition

UPDATE table_name
SET column1 = value1, column2 = value2, …
WHERE condition;

Advanced SQL
● Say we have these rows in the movie table
● Want to change the rt_rating of “Super 8” to 64

title year rt_rating movie_id director_id
-------------------- ---- --------- -------- -----------
King Kong 2005 84 1 4
Flags of Our Fathers 2006 73 2 3
Man of Steel 2013 55 3 1
Super 8 2011 82 4 5
Open Range 2003 79 5 7
The Kings Speech 2010 95 6 2
Hacksaw Ridge 2016 87 7 6

Advanced SQL

title year rt_rating movie_id director_id
-------------------- ---- --------- -------- -----------
King Kong 2005 84 1 4
Flags of Our Fathers 2006 73 2 3
Man of Steel 2013 55 3 1
Super 8 2011 64 4 5
Open Range 2003 79 5 7
The Kings Speech 2010 95 6 2
Hacksaw Ridge 2016 87 7 6

UPDATE movie
 SET rt_rating = 64
 WHERE title == 'Super 8';

Advanced SQL
● We can change multiple columns at once
● Want to change the year and rt_rating of “Hacksaw Ridge”

title year rt_rating movie_id director_id
-------------------- ---- --------- -------- -----------
King Kong 2005 84 1 4
Flags of Our Fathers 2006 73 2 3
Man of Steel 2013 55 3 1
Super 8 2011 82 4 5
Open Range 2003 79 5 7
The Kings Speech 2010 95 6 2
Hacksaw Ridge 2016 87 7 6

Advanced SQL

title year rt_rating movie_id director_id
-------------------- ---- --------- -------- -----------
King Kong 2005 84 1 4
Flags of Our Fathers 2006 73 2 3
Man of Steel 2013 55 3 1
Super 8 2011 64 4 5
Open Range 2003 79 5 7
The Kings Speech 2010 95 6 2
Hacksaw Ridge 2010 82 7 6

UPDATE movie
 SET rt_rating = 82, year = 2007
 WHERE title == 'Hacksaw Ridge';

Advanced SQL
● Exercise: Update the rt_rating to 90 of each movie made after 2007

Advanced SQL
● Exercise: Update the rt_rating to 90 of each movie made after 2007

UPDATE movie
 SET rt_rating = 90
 WHERE year > 2007;

Advanced SQL
● Aggregate Functions can be used to “aggregate” the values in one or

more columns in SELECT statements
● SQLite supports several aggregate functions, including

○ avg count group_concat max min sum
● Useful for gathering statistics and discovering the characteristics of a

data set
● Let’s try them out (to the command-line!)

● Reading Materials
○ https://sqlite.org/cli.html (SQLite command line help)
○ http://www.sqlitetutorial.net/sqlite-import-csv/ (Loading files)
○ https://sqlite.org/lang_aggfunc.html (Aggregate functions)

Advanced SQL

https://sqlite.org/cli.html
https://sqlite.org/cli.html
http://www.sqlitetutorial.net/sqlite-import-csv/
http://www.sqlitetutorial.net/sqlite-import-csv/
https://sqlite.org/lang_aggfunc.html
https://sqlite.org/lang_aggfunc.html

